Neko 1.99.1
A portable framework for high-order spectral element flow simulations
Loading...
Searching...
No Matches
flow_profile.f90 File Reference

Go to the source code of this file.

Data Types

interface  flow_profile::blasius_profile
 Abstract interface for computing a Blasius flow profile. More...
 

Modules

module  flow_profile
 Defines a flow profile.
 

Functions/Subroutines

real(kind=rp) function, public flow_profile::blasius_linear (y, delta, u)
 Linear approximate Blasius profile \( \frac{u}{U} = \frac{y}{\delta} \).
 
real(kind=rp) function, public flow_profile::blasius_quadratic (y, delta, u)
 Quadratic approximate Blasius Profile \( \frac{u}{U} = 2 \frac{y}{\delta} - (\frac{y}{\delta})^2 \).
 
real(kind=rp) function, public flow_profile::blasius_cubic (y, delta, u)
 Cubic approximate Blasius Profile \( \frac{u}{U} = 3/2 \frac{y}{\delta} - 1/2(\frac{y}{\delta})^3 \).
 
real(kind=rp) function, public flow_profile::blasius_quartic (y, delta, u)
 Quartic approximate Blasius Profile \( \frac{u}{U} = 2 \frac{y}{\delta} - 2(\frac{y}{\delta})^3 + (\frac{y}{\delta})^4 \).
 
real(kind=rp) function, public flow_profile::blasius_sin (y, delta, u)
 Sinusoidal approximate Blasius Profile \( \frac{u}{U} = \sin(\frac{\pi}{2}\frac{y}{\delta}) \).
 
real(kind=rp) function, public flow_profile::blasius_tanh (y, delta, u)
 Hyperbolic tangent approximate Blasius Profile from O. Savas (2012) \( \frac{u}{U} = (\tanh((5.075 a \frac{y}{\delta})^n))^{1/n} \) where \( \delta \) is the 99 percent thickness and the coefficients are \( a = 0.33245 \) and \( n = 5/3 \) Reference: https://doi.org/10.1016/j.cnsns.2012.02.002.