Neko 0.9.99
A portable framework for high-order spectral element flow simulations
Loading...
Searching...
No Matches
tensor_kernel.h
Go to the documentation of this file.
1#ifndef __MATH_TENSOR_KERNEL_H__
2#define __MATH_TENSOR_KERNEL_H__
3/*
4 Copyright (c) 2021-2022, The Neko Authors
5 All rights reserved.
6
7 Redistribution and use in source and binary forms, with or without
8 modification, are permitted provided that the following conditions
9 are met:
10
11 * Redistributions of source code must retain the above copyright
12 notice, this list of conditions and the following disclaimer.
13
14 * Redistributions in binary form must reproduce the above
15 copyright notice, this list of conditions and the following
16 disclaimer in the documentation and/or other materials provided
17 with the distribution.
18
19 * Neither the name of the authors nor the names of its
20 contributors may be used to endorse or promote products derived
21 from this software without specific prior written permission.
22
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 POSSIBILITY OF SUCH DAMAGE.
35*/
36template< typename T, const int N >
38 const int nv,
39 const T * __restrict__ u,
40 const int nu,
41 const T * __restrict__ A,
42 const T * __restrict__ Bt,
43 const T * __restrict__ Ct,
44 const int * elements,
45 const int n_points) {
48
49 const int idx = threadIdx.x;
50 const int str = blockDim.x;
51 const int pt = blockIdx.x;
52 const int e = elements[pt];
53
54 for (int ii = idx; ii< nu*nu*nv; ii += str) {
55 T tmp = 0.0;
56 int j = ii/nv;
57 int i = ii - j*nv;
58 for( int l = 0; l < nu; l++){
59 tmp += A[i+l*nv+pt*nv*nu]*u[l+nu*j+e*nu*nu*nu];
60 }
61 shwork[ii] = tmp;
62 }
63
65
66 for (int ijk = idx; ijk< nu*nv*nv; ijk += str) {
67 const int jk = ijk / nv;
68 const int i = ijk - jk * nv;
69 const int k = jk / nv;
70 const int j = jk - k * nv;
71 T tmp = 0.0;
72 const int ik2 = i + k*nv*nu;
73 for( int l = 0; l < nu; l++){
74 tmp += Bt[l+j*nu+pt*nv*nu]*shwork[l*nv+ik2];
75 }
76 shwork2[ijk] = tmp;
77 }
78
80
81 for (int ijk = idx; ijk< nv*nv*nv; ijk += str) {
82 const int jk = ijk / nv;
83 const int i = ijk - jk * nv;
84 const int k = jk / nv;
85 const int j = jk - k * nv;
86 T tmp = 0.0;
87 const int ij2 = i + j*nv;
88 for( int l = 0; l < nu; l++){
89 tmp += Ct[l+k*nu+pt*nv*nu]*shwork2[ij2 + l*nv*nv];
90 }
91 v[ijk+pt*nv*nv*nv] = tmp;
92 }
93
94}
95
96
97
98template< typename T, const int N >
100 const int nv,
101 const T * __restrict__ u,
102 const int nu,
103 const T * __restrict__ A,
104 const T * __restrict__ Bt,
105 const T * __restrict__ Ct) {
108
109 const int idx = threadIdx.x;
110 const int str = blockDim.x;
111 const int e = blockIdx.x;
112
113 for (int ii = idx; ii< nu*nu*nv; ii += str) {
114 T tmp = 0.0;
115 int j = ii/nv;
116 int i = ii - j*nv;
117 for( int l = 0; l < nu; l++){
118 tmp += A[i+l*nv]*u[l+nu*j+e*nu*nu*nu];
119 }
120 shwork[ii] = tmp;
121 }
122
124
125 for (int ijk = idx; ijk< nu*nv*nv; ijk += str) {
126 const int jk = ijk / nv;
127 const int i = ijk - jk * nv;
128 const int k = jk / nv;
129 const int j = jk - k * nv;
130 T tmp = 0.0;
131 const int ik2 = i + k*nv*nu;
132 for( int l = 0; l < nu; l++){
133 tmp += Bt[l+j*nu]*shwork[l*nv+ik2];
134 }
135 shwork2[ijk] = tmp;
136 }
137
139
140 for (int ijk = idx; ijk< nv*nv*nv; ijk += str) {
141 const int jk = ijk / nv;
142 const int i = ijk - jk * nv;
143 const int k = jk / nv;
144 const int j = jk - k * nv;
145 T tmp = 0.0;
146 const int ij2 = i + j*nv;
147 for( int l = 0; l < nu; l++){
148 tmp += Ct[l+k*nu]*shwork2[ij2 + l*nv*nv];
149 }
150 v[ijk+e*nv*nv*nv] = tmp;
151 }
152}
153
154template< typename T, const int N >
156 const int nv,
157 const T * __restrict__ u,
158 const int nu,
159 const T * __restrict__ A,
160 const T * __restrict__ Bt,
161 const T * __restrict__ Ct) {
163 T shwork2[N*N*N];
164
165 const int idx = threadIdx.x;
166 const int str = blockDim.x;
167 const int e = blockIdx.x;
168
169 for (int ii = idx; ii< nu*nu*nv; ii += str) {
170 T tmp = 0.0;
171 int j = ii/nv;
172 int i = ii - j*nv;
173 for( int l = 0; l < nu; l++){
174 tmp += A[i+l*nv]*u[l+nu*j+e*nu*nu*nu];
175 }
176 shwork[ii] = tmp;
177 }
178
180
181 for (int ijk = idx; ijk< nu*nv*nv; ijk += str) {
182 const int jk = ijk / nv;
183 const int i = ijk - jk * nv;
184 const int k = jk / nv;
185 const int j = jk - k * nv;
186 T tmp = 0.0;
187 const int ik2 = i + k*nv*nu;
188 for( int l = 0; l < nu; l++){
189 tmp += Bt[l+j*nu]*shwork[l*nv+ik2];
190 }
191 shwork2[ijk] = tmp;
192 }
193
195
196 for (int ijk = idx; ijk< nv*nv*nv; ijk += str) {
197 const int jk = ijk / nv;
198 const int i = ijk - jk * nv;
199 const int k = jk / nv;
200 const int j = jk - k * nv;
201 T tmp = 0.0;
202 const int ij2 = i + j*nv;
203 for( int l = 0; l < nu; l++){
204 tmp += Ct[l+k*nu]*shwork2[ij2 + l*nv*nv];
205 }
206 v[ijk+e*nv*nv*nv] = tmp;
207 }
208}
209
210
211
212#endif // __MATH_TENSOR_KERNEL_H__
const int i
__global__ void T *__restrict__ T *__restrict__ const T *__restrict__ u
const int e
__global__ void T *__restrict__ T *__restrict__ const T *__restrict__ const T *__restrict__ v
const int j
__syncthreads()
__global__ void dirichlet_apply_scalar_kernel(const int *__restrict__ msk, T *__restrict__ x, const T g, const int m)
__global__ void tnsr3d_el_kernel(T *__restrict__ v, const int nv, const T *__restrict__ u, const int nu, const T *__restrict__ A, const T *__restrict__ Bt, const T *__restrict__ Ct, const int *elements, const int n_points)
__global__ void tnsr3d_kernel(T *__restrict__ v, const int nv, const T *__restrict__ u, const int nu, const T *__restrict__ A, const T *__restrict__ Bt, const T *__restrict__ Ct)
__global__ void tnsr3d_kernel_large(T *__restrict__ v, const int nv, const T *__restrict__ u, const int nu, const T *__restrict__ A, const T *__restrict__ Bt, const T *__restrict__ Ct)