| 
    Neko 0.9.1
    
   A portable framework for high-order spectral element flow simulations 
   | 
 
Functions/Subroutines | |
| subroutine, public | field_rzero (a, n) | 
| Zero a real vector.   | |
| subroutine, public | field_rone (a, n) | 
| Set all elements to one.   | |
| subroutine, public | field_copy (a, b, n) | 
| Copy a vector \( a = b \).   | |
| subroutine, public | field_cmult (a, c, n) | 
| Multiplication by constant c \( a = c \cdot a \).   | |
| subroutine, public | field_cadd (a, s, n) | 
| Add a scalar to vector \( a = \sum a_i + s \).   | |
| subroutine, public | field_cfill (a, c, n) | 
| Set all elements to a constant c \( a = c \).   | |
| subroutine, public | field_invcol1 (a, n) | 
| Invert a vector \( a = 1 / a \).   | |
| subroutine, public | field_vdot3 (dot, u1, u2, u3, v1, v2, v3, n) | 
| Compute a dot product \( dot = u \cdot v \) (3-d version) assuming vector components \( u = (u_1, u_2, u_3) \) etc.   | |
| subroutine, public | field_add2 (a, b, n) | 
| Vector addition \( a = a + b \).   | |
| subroutine | field_add3 (a, b, c, n) | 
| Vector addition \( a = b + c \).   | |
| subroutine | field_add4 (a, b, c, d, n) | 
| Vector addition \( a = b + c + d \).   | |
| subroutine, public | field_sub2 (a, b, n) | 
| Vector substraction \( a = a - b \).   | |
| subroutine, public | field_sub3 (a, b, c, n) | 
| Vector subtraction \( a = b - c \).   | |
| subroutine, public | field_add2s1 (a, b, c1, n) | 
| Vector addition with scalar multiplication \( a = c_1 a + b \) (multiplication on first argument)   | |
| subroutine, public | field_add2s2 (a, b, c1, n) | 
| Vector addition with scalar multiplication \( a = a + c_1 b \) (multiplication on second argument)   | |
| subroutine, public | field_addsqr2s2 (a, b, c1, n) | 
| Returns \( a = a + c1 * (b * b )\).   | |
| subroutine, public | field_cmult2 (a, b, c, n) | 
| Multiplication by constant c \( a = c \cdot b \).   | |
| subroutine, public | field_invcol2 (a, b, n) | 
| Vector division \( a = a / b \).   | |
| subroutine, public | field_col2 (a, b, n) | 
| Vector multiplication \( a = a \cdot b \).   | |
| subroutine, public | field_col3 (a, b, c, n) | 
| Vector multiplication with 3 vectors \( a =  b \cdot c \).   | |
| subroutine, public | field_subcol3 (a, b, c, n) | 
| Returns \( a = a - b*c \).   | |
| subroutine, public | field_add3s2 (a, b, c, c1, c2, n) | 
| Returns \( a = c1 * b + c2 * c \).   | |
| subroutine, public | field_addcol3 (a, b, c, n) | 
| Returns \( a = a + b*c \).   | |
| subroutine, public | field_addcol4 (a, b, c, d, n) | 
| Returns \( a = a + b*c*d \).   | |
| real(kind=rp) function, public | field_glsum (a, n) | 
| real(kind=rp) function, public | field_glsc2 (a, b, n) | 
| real(kind=rp) function, public | field_glsc3 (a, b, c, n) | 
| subroutine, public field_math::field_add2s2 | ( | type(field_t), intent(inout) | a, | 
| type(field_t), intent(inout) | b, | ||
| real(kind=rp), intent(in) | c1, | ||
| integer, intent(in), optional | n | ||
| ) | 
Definition at line 385 of file field_math.f90.


| subroutine, public field_math::field_cfill | ( | type(field_t), intent(inout) | a, | 
| real(kind=rp), intent(in) | c, | ||
| integer, intent(in), optional | n | ||
| ) | 
Definition at line 185 of file field_math.f90.


| subroutine, public field_math::field_cmult | ( | type(field_t), intent(inout) | a, | 
| real(kind=rp), intent(in) | c, | ||
| integer, intent(in), optional | n | ||
| ) | 
Definition at line 145 of file field_math.f90.


| subroutine, public field_math::field_rzero | ( | type(field_t), intent(inout) | a, | 
| integer, intent(in), optional | n | ||
| ) | 
Definition at line 87 of file field_math.f90.


| subroutine, public field_math::field_subcol3 | ( | type(field_t), intent(inout) | a, | 
| type(field_t), intent(in) | b, | ||
| type(field_t), intent(in) | c, | ||
| integer, intent(in), optional | n | ||
| ) | 
Definition at line 516 of file field_math.f90.

