| 
    Neko 0.9.1
    
   A portable framework for high-order spectral element flow simulations 
   | 
 
Public Member Functions | |
| subroutine | triple_tensor_product_scalar (v, u, nu, hr, hs, ht) | 
| Computes the tensor product \( v =(H_t \otimes H_s \otimes H_r) u \). This operation is usually performed for spectral interpolation of a scalar field as defined by.   | |
| subroutine | triple_tensor_product_vector (v, u1, u2, u3, nu, hr, hs, ht) | 
| Computes the tensor product on a vector field \( \mathbf{v} =(H_t \otimes H_s \otimes H_r) \mathbf{u} \). This operation is usually performed for spectral interpolation on a 3D vector field \( \mathbf{u} = (u_1,u_2,u_3) \) as defined by.   | |
Definition at line 78 of file tensor.f90.
| subroutine tensor::triple_tensor_product::triple_tensor_product_scalar | ( | real(kind=rp), intent(inout) | v, | 
| real(kind=rp), dimension(nu,nu,nu), intent(inout) | u, | ||
| integer, intent(in) | nu, | ||
| real(kind=rp), dimension(nu), intent(inout) | hr, | ||
| real(kind=rp), dimension(nu), intent(inout) | hs, | ||
| real(kind=rp), dimension(nu), intent(inout) | ht | ||
| ) | 
\begin{eqnarray*} v(r,s,t) = \sum_{i=0}^{N}{\sum_{j=0}^{N}{ \sum_{k=0}^{N}{u_{ijk}h_i(r)h_j(s)h_k(t)}}} \end{eqnarray*}
| v | Interpolated value (scalar). | 
| u | Field values at the GLL points (e.g. velocity in x-direction). | 
| nu | Size of the interpolation weights (usually lx).  | 
| Hr | Interpolation weights in the r-direction. | 
| Hs | Interpolation weights in the s-direction. | 
| Ht | Interpolation weights in the t-direction. | 
Definition at line 297 of file tensor.f90.

| subroutine tensor::triple_tensor_product::triple_tensor_product_vector | ( | real(kind=rp), dimension(3), intent(inout) | v, | 
| real(kind=rp), dimension(nu,nu,nu), intent(inout) | u1, | ||
| real(kind=rp), dimension(nu,nu,nu), intent(inout) | u2, | ||
| real(kind=rp), dimension(nu,nu,nu), intent(inout) | u3, | ||
| integer, intent(in) | nu, | ||
| real(kind=rp), dimension(nu), intent(inout) | hr, | ||
| real(kind=rp), dimension(nu), intent(inout) | hs, | ||
| real(kind=rp), dimension(nu), intent(inout) | ht | ||
| ) | 
\begin{eqnarray*} \mathbf{v}(r,s,t) = \sum_{i=0}^{N}{\sum_{j=0}^{N}{ \sum_{k=0}^{N}{\mathbf{u}_{ijk}h_i(r)h_j(s)h_k(t)}}} \end{eqnarray*}
| v | Interpolated value (scalar). | 
| u1 | 3D-array containing values at the GLL points (e.g. velocity). | 
| u2 | 3D-array containing values at the GLL points (e.g. velocity). | 
| u3 | 3D-array containing values at the GLL points (e.g. velocity). | 
| nu | Size of the interpolation weights (usually lx).  | 
| Hr | Interpolation weights in the r-direction. | 
| Hs | Interpolation weights in the s-direction. | 
| Ht | Interpolation weights in the t-direction. | 
Definition at line 333 of file tensor.f90.
