|
subroutine | triple_tensor_product_scalar (v, u, nu, Hr, Hs, Ht) |
| Computes the tensor product \( v =(H_t \otimes H_s \otimes H_r) u \). This operation is usually performed for spectral interpolation of a scalar field as defined by. More...
|
|
subroutine | triple_tensor_product_vector (v, u1, u2, u3, nu, Hr, Hs, Ht) |
| Computes the tensor product on a vector field \( \mathbf{v} =(H_t \otimes H_s \otimes H_r) \mathbf{u} \). This operation is usually performed for spectral interpolation on a 3D vector field \( \mathbf{u} = (u_1,u_2,u_3) \) as defined by. More...
|
|
Definition at line 78 of file tensor.f90.
◆ triple_tensor_product_scalar()
subroutine tensor::triple_tensor_product::triple_tensor_product_scalar |
( |
real(kind=rp), intent(inout) |
v, |
|
|
real(kind=rp), dimension(nu,nu,nu), intent(inout) |
u, |
|
|
integer, intent(in) |
nu, |
|
|
real(kind=rp), dimension(nu), intent(inout) |
Hr, |
|
|
real(kind=rp), dimension(nu), intent(inout) |
Hs, |
|
|
real(kind=rp), dimension(nu), intent(inout) |
Ht |
|
) |
| |
|
private |
\begin{eqnarray*} v(r,s,t) = \sum_{i=0}^{N}{\sum_{j=0}^{N}{ \sum_{k=0}^{N}{u_{ijk}h_i(r)h_j(s)h_k(t)}}} \end{eqnarray*}
- Parameters
-
v | Interpolated value (scalar). |
u | Field values at the GLL points (e.g. velocity in x-direction). |
nu | Size of the interpolation weights (usually lx ). |
Hr | Interpolation weights in the r-direction. |
Hs | Interpolation weights in the s-direction. |
Ht | Interpolation weights in the t-direction. |
Definition at line 297 of file tensor.f90.
◆ triple_tensor_product_vector()
subroutine tensor::triple_tensor_product::triple_tensor_product_vector |
( |
real(kind=rp), dimension(3), intent(inout) |
v, |
|
|
real(kind=rp), dimension(nu,nu,nu), intent(inout) |
u1, |
|
|
real(kind=rp), dimension(nu,nu,nu), intent(inout) |
u2, |
|
|
real(kind=rp), dimension(nu,nu,nu), intent(inout) |
u3, |
|
|
integer, intent(in) |
nu, |
|
|
real(kind=rp), dimension(nu), intent(inout) |
Hr, |
|
|
real(kind=rp), dimension(nu), intent(inout) |
Hs, |
|
|
real(kind=rp), dimension(nu), intent(inout) |
Ht |
|
) |
| |
|
private |
\begin{eqnarray*} \mathbf{v}(r,s,t) = \sum_{i=0}^{N}{\sum_{j=0}^{N}{ \sum_{k=0}^{N}{\mathbf{u}_{ijk}h_i(r)h_j(s)h_k(t)}}} \end{eqnarray*}
- Parameters
-
v | Interpolated value (scalar). |
u1 | 3D-array containing values at the GLL points (e.g. velocity). |
u2 | 3D-array containing values at the GLL points (e.g. velocity). |
u3 | 3D-array containing values at the GLL points (e.g. velocity). |
nu | Size of the interpolation weights (usually lx ). |
Hr | Interpolation weights in the r-direction. |
Hs | Interpolation weights in the s-direction. |
Ht | Interpolation weights in the t-direction. |
Definition at line 333 of file tensor.f90.
The documentation for this interface was generated from the following file: