Neko
0.9.0
A portable framework for high-order spectral element flow simulations
|
LIBRARY ROUTINES FOR SPECTRAL METHODS. More...
Functions/Subroutines | |
subroutine | zwgl (Z, W, NP) |
Generate NP Gauss Legendre points Z and weights W associated with Jacobi polynomial \( P(N)(\alpha=0, \beta=0) \). The polynomial degree N = NP-1 . More... | |
subroutine | zwgll (Z, W, NP) |
subroutine | zwgj (Z, W, NP, ALPHA, BETA) |
subroutine | zwgjd (Z, W, NP, ALPHA, BETA) |
subroutine | zwglj (Z, W, NP, ALPHA, BETA) |
subroutine | zwgljd (Z, W, NP, ALPHA, BETA) |
real(kind=xp) function | endw1 (N, ALPHA, BETA) |
real(kind=xp) function | endw2 (N, ALPHA, BETA) |
real(kind=xp) function | gammaf (X) |
real(kind=xp) function | pnormj (N, ALPHA, BETA) |
subroutine | jacg (XJAC, NP, ALPHA, BETA) |
subroutine | jacobf (POLY, PDER, POLYM1, PDERM1, POLYM2, PDERM2, N, ALP, BET, X) |
real(kind=xp) function | hgj (II, Z, ZGJ, NP, ALPHA, BETA) |
real(kind=xp) function | hgjd (II, Z, ZGJ, NP, ALPHA, BETA) |
real(kind=xp) function | hglj (II, Z, ZGLJ, NP, ALPHA, BETA) |
real(kind=xp) function | hgljd (I, Z, ZGLJ, NP, ALPHA, BETA) |
subroutine | dgj (D, DT, Z, NZ, NZD, ALPHA, BETA) |
subroutine | dgjd (D, DT, Z, NZ, NZD, ALPHA, BETA) |
subroutine | dglj (D, DT, Z, NZ, NZD, ALPHA, BETA) |
subroutine | dgljd (D, DT, Z, NZ, NZD, ALPHA, BETA) |
subroutine | dgll (D, DT, Z, NZ, NZD) |
real(kind=xp) function | hgll (I, Z, ZGLL, NZ) |
real(kind=xp) function | hgl (I, Z, ZGL, NZ) |
real(kind=xp) function | pnleg (Z, N) |
subroutine | legendre_poly (L, x, N) |
Evaluate Legendre polynomials of degrees 0-N at point x and store in array L. More... | |
real(kind=xp) function | pndleg (Z, N) |
subroutine | dgllgl (D, DT, ZM1, ZM2, IM12, NZM1, NZM2, ND1, ND2) |
subroutine | dgljgj (D, DT, ZGL, ZG, IGLG, NPGL, NPG, ND1, ND2, ALPHA, BETA) |
subroutine | dgljgjd (D, DT, ZGL, ZG, IGLG, NPGL, NPG, ND1, ND2, ALPHA, BETA) |
subroutine | iglm (I12, IT12, Z1, Z2, NZ1, NZ2, ND1, ND2) |
subroutine | igllm (I12, IT12, Z1, Z2, NZ1, NZ2, ND1, ND2) |
subroutine | igjm (I12, IT12, Z1, Z2, NZ1, NZ2, ND1, ND2, ALPHA, BETA) |
subroutine | igljm (I12, IT12, Z1, Z2, NZ1, NZ2, ND1, ND2, ALPHA, BETA) |
March 1989
For questions, comments or suggestions, please contact:
Einar Malvin Ronquist Room 3-243 Department of Mechanical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 0299 U.S.A.
subroutine speclib::dgjd | ( | real(kind=xp), dimension(nzd,nzd) | D, |
real(kind=xp), dimension(nzd,nzd) | DT, | ||
real(kind=xp), dimension(1) | Z, | ||
NZ, | |||
NZD, | |||
real(kind=xp) | ALPHA, | ||
real(kind=xp) | BETA | ||
) |
Definition at line 734 of file speclib.f90.
subroutine speclib::dgljd | ( | real(kind=xp), dimension(nzd,nzd) | D, |
real(kind=xp), dimension(nzd,nzd) | DT, | ||
real(kind=xp), dimension(1) | Z, | ||
NZ, | |||
NZD, | |||
real(kind=xp) | ALPHA, | ||
real(kind=xp) | BETA | ||
) |
Definition at line 817 of file speclib.f90.
subroutine speclib::dgljgjd | ( | real(kind=xp), dimension(nd2,nd1) | D, |
real(kind=xp), dimension(nd1,nd2) | DT, | ||
real(kind=xp), dimension(nd1) | ZGL, | ||
real(kind=xp), dimension(nd2) | ZG, | ||
real(kind=xp), dimension(nd2,nd1) | IGLG, | ||
NPGL, | |||
NPG, | |||
ND1, | |||
ND2, | |||
real(kind=xp) | ALPHA, | ||
real(kind=xp) | BETA | ||
) |
Definition at line 1116 of file speclib.f90.
subroutine speclib::dgll | ( | real(kind=rp), dimension(nzd,nzd) | D, |
real(kind=rp), dimension(nzd,nzd) | DT, | ||
real(kind=rp), dimension(1) | Z, | ||
NZ, | |||
NZD | |||
) |
Definition at line 864 of file speclib.f90.
Definition at line 344 of file speclib.f90.
Definition at line 388 of file speclib.f90.
real(kind=xp) function speclib::hgj | ( | II, | |
real(kind=xp) | Z, | ||
real(kind=xp), dimension(1) | ZGJ, | ||
NP, | |||
real(kind=xp) | ALPHA, | ||
real(kind=xp) | BETA | ||
) |
Definition at line 580 of file speclib.f90.
real(kind=xp) function speclib::hgjd | ( | II, | |
real(kind=xp) | Z, | ||
real(kind=xp), dimension(1) | ZGJ, | ||
NP, | |||
real(kind=xp) | ALPHA, | ||
real(kind=xp) | BETA | ||
) |
Definition at line 609 of file speclib.f90.
Definition at line 923 of file speclib.f90.
real(kind=xp) function speclib::hglj | ( | II, | |
real(kind=xp) | Z, | ||
real(kind=xp), dimension(1) | ZGLJ, | ||
NP, | |||
real(kind=xp) | ALPHA, | ||
real(kind=xp) | BETA | ||
) |
Definition at line 633 of file speclib.f90.
real(kind=xp) function speclib::hgljd | ( | I, | |
real(kind=xp) | Z, | ||
real(kind=xp), dimension(1) | ZGLJ, | ||
NP, | |||
real(kind=xp) | ALPHA, | ||
real(kind=xp) | BETA | ||
) |
Definition at line 662 of file speclib.f90.
Definition at line 901 of file speclib.f90.
subroutine speclib::jacg | ( | real(kind=xp), dimension(1) | XJAC, |
NP, | |||
ALPHA, | |||
BETA | |||
) |
Definition at line 482 of file speclib.f90.
subroutine speclib::jacobf | ( | POLY, | |
PDER, | |||
POLYM1, | |||
PDERM1, | |||
POLYM2, | |||
PDERM2, | |||
N, | |||
ALP, | |||
BET, | |||
X | |||
) |
Definition at line 456 of file speclib.f90.
subroutine speclib::zwgj | ( | real(kind=rp), dimension(1) | Z, |
real(kind=rp), dimension(1) | W, | ||
NP, | |||
real(kind=rp) | ALPHA, | ||
real(kind=rp) | BETA | ||
) |
Definition at line 185 of file speclib.f90.
subroutine speclib::zwgjd | ( | real(kind=xp), dimension(1) | Z, |
real(kind=xp), dimension(1) | W, | ||
NP, | |||
real(kind=xp) | ALPHA, | ||
real(kind=xp) | BETA | ||
) |
Definition at line 216 of file speclib.f90.
Z | Quadrature points. |
W | Quadrature weights. |
NP | Number of quadrature points. |
Definition at line 160 of file speclib.f90.
subroutine speclib::zwglj | ( | real(kind=rp), dimension(1) | Z, |
real(kind=rp), dimension(1) | W, | ||
NP, | |||
real(kind=rp) | ALPHA, | ||
real(kind=rp) | BETA | ||
) |
Definition at line 268 of file speclib.f90.
subroutine speclib::zwgljd | ( | real(kind=xp), dimension(np) | Z, |
real(kind=xp), dimension(np) | W, | ||
NP, | |||
real(kind=xp) | ALPHA, | ||
real(kind=xp) | BETA | ||
) |
Definition at line 299 of file speclib.f90.
Definition at line 168 of file speclib.f90.