Neko 0.9.99
A portable framework for high-order spectral element flow simulations
Loading...
Searching...
No Matches
space::space_t Type Reference

The function space for the SEM solution fields. More...

Collaboration diagram for space::space_t:

Public Member Functions

procedure, pass(s) init (s, t, lx, ly, lz)
 Initialize a function space s with given polynomial dimensions.
 
procedure, pass(s) free (s)
 Deallocate a space s.
 

Public Attributes

integer t
 Space type (GL, GLL, GJ, ...)
 
integer lx
 Polynomial dimension in x-direction.
 
integer ly
 Polynomial dimension in y-direction.
 
integer lz
 Polynomial dimension in z-direction.
 
integer lxy
 Number of points in xy-plane.
 
integer lyz
 Number of points in yz-plane.
 
integer lxz
 Number of points in xz-plane.
 
integer lxyz
 Number of points in xyz-block.
 
real(kind=rp), dimension(:,:), allocatable zg
 Quadrature points.
 
real(kind=rp), dimension(:), allocatable dr_inv
 1/dist quadrature points
 
real(kind=rp), dimension(:), allocatable ds_inv
 1/dist quadrature points
 
real(kind=rp), dimension(:), allocatable dt_inv
 1/dist quadrature points
 
real(kind=rp), dimension(:), allocatable wx
 Quadrature weights.
 
real(kind=rp), dimension(:), allocatable wy
 Quadrature weights.
 
real(kind=rp), dimension(:), allocatable wz
 Quadrature weights.
 
real(kind=rp), dimension(:,:,:), allocatable w3
 wx * wy * wz
 
real(kind=rp), dimension(:,:), allocatable dx
 Derivative operator \( D_1 \).
 
real(kind=rp), dimension(:,:), allocatable dy
 Derivative operator \( D_2 \).
 
real(kind=rp), dimension(:,:), allocatable dz
 Derivative operator \( D_3 \).
 
real(kind=rp), dimension(:,:), allocatable dxt
 Transposed derivative operator \( D_1^T \).
 
real(kind=rp), dimension(:,:), allocatable dyt
 Transposed derivative operator \( D_2^T \).
 
real(kind=rp), dimension(:,:), allocatable dzt
 Transposed derivative operator \( D_3^T \).
 
real(kind=rp), dimension(:,:), allocatable v
 Legendre transformation matrices.
 
real(kind=rp), dimension(:,:), allocatable vt
 legendre to physical t
 
real(kind=rp), dimension(:,:), allocatable vinv
 Physical to legendre.
 
real(kind=rp), dimension(:,:), allocatable vinvt
 Physical to legendre t.
 
real(kind=rp), dimension(:,:), allocatable w
 Legendre weights in matrix form.
 
type(c_ptr) dr_inv_d = C_NULL_PTR
 
type(c_ptr) ds_inv_d = C_NULL_PTR
 
type(c_ptr) dt_inv_d = C_NULL_PTR
 
type(c_ptr) dxt_d = C_NULL_PTR
 
type(c_ptr) dyt_d = C_NULL_PTR
 
type(c_ptr) dzt_d = C_NULL_PTR
 
type(c_ptr) dx_d = C_NULL_PTR
 
type(c_ptr) dy_d = C_NULL_PTR
 
type(c_ptr) dz_d = C_NULL_PTR
 
type(c_ptr) wx_d = C_NULL_PTR
 
type(c_ptr) wy_d = C_NULL_PTR
 
type(c_ptr) wz_d = C_NULL_PTR
 
type(c_ptr) zg_d = C_NULL_PTR
 
type(c_ptr) w3_d = C_NULL_PTR
 
type(c_ptr) v_d = C_NULL_PTR
 
type(c_ptr) vt_d = C_NULL_PTR
 
type(c_ptr) vinv_d = C_NULL_PTR
 
type(c_ptr) vinvt_d = C_NULL_PTR
 
type(c_ptr) w_d = C_NULL_PTR
 

Detailed Description

In SEM, the solution fields are represented as a linear combination of basis functions for a particular function space. Thus, the properties of the space define that of the solution. The global SEM basis is never build, but is implictly defined by the local basis for each element. The latter is polynomial, and is therefore defined by the order of the polys and the selected locations of the nodes for storing the solution. In SEM, the latter coincides with a Gaussian quadrature (GL, GLL, etc.)

Note
The standard variable name for the space_t type in Neko is Xh.
Warning
Although the type has separate members for the poly orders in x, y, and z, in the current implementation these are forced to be equal.

Definition at line 62 of file space.f90.

Member Function/Subroutine Documentation

◆ free()

procedure, pass(s) space::space_t::free ( class(space_t), intent(inout s)

Definition at line 130 of file space.f90.

◆ init()

procedure, pass(s) space::space_t::init ( class(space_t), intent(inout s,
integer, intent(in t,
integer, intent(in lx,
integer, intent(in ly,
integer, intent(in), optional  lz 
)
Parameters
[in]tQuadrature type
[in]lxPolynomial dimension in x-direction
[in]lyPolynomial dimension in y-direction
[in]lzPolynomial dimension in z-direction

Definition at line 129 of file space.f90.

Member Data Documentation

◆ dr_inv

real(kind=rp), dimension(:), allocatable space::space_t::dr_inv

Definition at line 74 of file space.f90.

◆ dr_inv_d

type(c_ptr) space::space_t::dr_inv_d = C_NULL_PTR

Definition at line 109 of file space.f90.

◆ ds_inv

real(kind=rp), dimension(:), allocatable space::space_t::ds_inv

Definition at line 75 of file space.f90.

◆ ds_inv_d

type(c_ptr) space::space_t::ds_inv_d = C_NULL_PTR

Definition at line 110 of file space.f90.

◆ dt_inv

real(kind=rp), dimension(:), allocatable space::space_t::dt_inv

Definition at line 76 of file space.f90.

◆ dt_inv_d

type(c_ptr) space::space_t::dt_inv_d = C_NULL_PTR

Definition at line 111 of file space.f90.

◆ dx

real(kind=rp), dimension(:,:), allocatable space::space_t::dx

Definition at line 85 of file space.f90.

◆ dx_d

type(c_ptr) space::space_t::dx_d = C_NULL_PTR

Definition at line 115 of file space.f90.

◆ dxt

real(kind=rp), dimension(:,:), allocatable space::space_t::dxt

Definition at line 92 of file space.f90.

◆ dxt_d

type(c_ptr) space::space_t::dxt_d = C_NULL_PTR

Definition at line 112 of file space.f90.

◆ dy

real(kind=rp), dimension(:,:), allocatable space::space_t::dy

Definition at line 87 of file space.f90.

◆ dy_d

type(c_ptr) space::space_t::dy_d = C_NULL_PTR

Definition at line 116 of file space.f90.

◆ dyt

real(kind=rp), dimension(:,:), allocatable space::space_t::dyt

Definition at line 94 of file space.f90.

◆ dyt_d

type(c_ptr) space::space_t::dyt_d = C_NULL_PTR

Definition at line 113 of file space.f90.

◆ dz

real(kind=rp), dimension(:,:), allocatable space::space_t::dz

Definition at line 89 of file space.f90.

◆ dz_d

type(c_ptr) space::space_t::dz_d = C_NULL_PTR

Definition at line 117 of file space.f90.

◆ dzt

real(kind=rp), dimension(:,:), allocatable space::space_t::dzt

Definition at line 96 of file space.f90.

◆ dzt_d

type(c_ptr) space::space_t::dzt_d = C_NULL_PTR

Definition at line 114 of file space.f90.

◆ lx

integer space::space_t::lx

Definition at line 64 of file space.f90.

◆ lxy

integer space::space_t::lxy

Definition at line 67 of file space.f90.

◆ lxyz

integer space::space_t::lxyz

Definition at line 70 of file space.f90.

◆ lxz

integer space::space_t::lxz

Definition at line 69 of file space.f90.

◆ ly

integer space::space_t::ly

Definition at line 65 of file space.f90.

◆ lyz

integer space::space_t::lyz

Definition at line 68 of file space.f90.

◆ lz

integer space::space_t::lz

Definition at line 66 of file space.f90.

◆ t

integer space::space_t::t

Definition at line 63 of file space.f90.

◆ v

real(kind=rp), dimension(:,:), allocatable space::space_t::v

legendre to physical

Definition at line 99 of file space.f90.

◆ v_d

type(c_ptr) space::space_t::v_d = C_NULL_PTR

Definition at line 123 of file space.f90.

◆ vinv

real(kind=rp), dimension(:,:), allocatable space::space_t::vinv

Definition at line 101 of file space.f90.

◆ vinv_d

type(c_ptr) space::space_t::vinv_d = C_NULL_PTR

Definition at line 125 of file space.f90.

◆ vinvt

real(kind=rp), dimension(:,:), allocatable space::space_t::vinvt

Definition at line 102 of file space.f90.

◆ vinvt_d

type(c_ptr) space::space_t::vinvt_d = C_NULL_PTR

Definition at line 126 of file space.f90.

◆ vt

real(kind=rp), dimension(:,:), allocatable space::space_t::vt

Definition at line 100 of file space.f90.

◆ vt_d

type(c_ptr) space::space_t::vt_d = C_NULL_PTR

Definition at line 124 of file space.f90.

◆ w

real(kind=rp), dimension(:,:), allocatable space::space_t::w

Legendre weights

Definition at line 104 of file space.f90.

◆ w3

real(kind=rp), dimension(:,:,:), allocatable space::space_t::w3

Definition at line 82 of file space.f90.

◆ w3_d

type(c_ptr) space::space_t::w3_d = C_NULL_PTR

Definition at line 122 of file space.f90.

◆ w_d

type(c_ptr) space::space_t::w_d = C_NULL_PTR

Definition at line 127 of file space.f90.

◆ wx

real(kind=rp), dimension(:), allocatable space::space_t::wx

Definition at line 78 of file space.f90.

◆ wx_d

type(c_ptr) space::space_t::wx_d = C_NULL_PTR

Definition at line 118 of file space.f90.

◆ wy

real(kind=rp), dimension(:), allocatable space::space_t::wy

Definition at line 79 of file space.f90.

◆ wy_d

type(c_ptr) space::space_t::wy_d = C_NULL_PTR

Definition at line 119 of file space.f90.

◆ wz

real(kind=rp), dimension(:), allocatable space::space_t::wz

Definition at line 80 of file space.f90.

◆ wz_d

type(c_ptr) space::space_t::wz_d = C_NULL_PTR

Definition at line 120 of file space.f90.

◆ zg

real(kind=rp), dimension(:,:), allocatable space::space_t::zg

Definition at line 72 of file space.f90.

◆ zg_d

type(c_ptr) space::space_t::zg_d = C_NULL_PTR

Definition at line 121 of file space.f90.


The documentation for this type was generated from the following file: