|
integer | t |
| Space type (GL, GLL, GJ, ...)
|
|
integer | lx |
| Polynomial dimension in x-direction.
|
|
integer | ly |
| Polynomial dimension in y-direction.
|
|
integer | lz |
| Polynomial dimension in z-direction.
|
|
integer | lxy |
| Number of points in xy-plane.
|
|
integer | lyz |
| Number of points in yz-plane.
|
|
integer | lxz |
| Number of points in xz-plane.
|
|
integer | lxyz |
| Number of points in xyz-block.
|
|
real(kind=rp), dimension(:,:), allocatable | zg |
| Quadrature points.
|
|
real(kind=rp), dimension(:), allocatable | dr_inv |
| 1/dist quadrature points
|
|
real(kind=rp), dimension(:), allocatable | ds_inv |
| 1/dist quadrature points
|
|
real(kind=rp), dimension(:), allocatable | dt_inv |
| 1/dist quadrature points
|
|
real(kind=rp), dimension(:), allocatable | wx |
| Quadrature weights.
|
|
real(kind=rp), dimension(:), allocatable | wy |
| Quadrature weights.
|
|
real(kind=rp), dimension(:), allocatable | wz |
| Quadrature weights.
|
|
real(kind=rp), dimension(:,:,:), allocatable | w3 |
| wx * wy * wz
|
|
real(kind=rp), dimension(:,:), allocatable | dx |
| Derivative operator \( D_1 \).
|
|
real(kind=rp), dimension(:,:), allocatable | dy |
| Derivative operator \( D_2 \).
|
|
real(kind=rp), dimension(:,:), allocatable | dz |
| Derivative operator \( D_3 \).
|
|
real(kind=rp), dimension(:,:), allocatable | dxt |
| Transposed derivative operator \( D_1^T \).
|
|
real(kind=rp), dimension(:,:), allocatable | dyt |
| Transposed derivative operator \( D_2^T \).
|
|
real(kind=rp), dimension(:,:), allocatable | dzt |
| Transposed derivative operator \( D_3^T \).
|
|
real(kind=rp), dimension(:,:), allocatable | v |
| Legendre transformation matrices.
|
|
real(kind=rp), dimension(:,:), allocatable | vt |
| legendre to physical t
|
|
real(kind=rp), dimension(:,:), allocatable | vinv |
| Physical to legendre.
|
|
real(kind=rp), dimension(:,:), allocatable | vinvt |
| Physical to legendre t.
|
|
real(kind=rp), dimension(:,:), allocatable | w |
| Legendre weights in matrix form.
|
|
type(c_ptr) | dr_inv_d = C_NULL_PTR |
|
type(c_ptr) | ds_inv_d = C_NULL_PTR |
|
type(c_ptr) | dt_inv_d = C_NULL_PTR |
|
type(c_ptr) | dxt_d = C_NULL_PTR |
|
type(c_ptr) | dyt_d = C_NULL_PTR |
|
type(c_ptr) | dzt_d = C_NULL_PTR |
|
type(c_ptr) | dx_d = C_NULL_PTR |
|
type(c_ptr) | dy_d = C_NULL_PTR |
|
type(c_ptr) | dz_d = C_NULL_PTR |
|
type(c_ptr) | wx_d = C_NULL_PTR |
|
type(c_ptr) | wy_d = C_NULL_PTR |
|
type(c_ptr) | wz_d = C_NULL_PTR |
|
type(c_ptr) | zg_d = C_NULL_PTR |
|
type(c_ptr) | w3_d = C_NULL_PTR |
|
type(c_ptr) | v_d = C_NULL_PTR |
|
type(c_ptr) | vt_d = C_NULL_PTR |
|
type(c_ptr) | vinv_d = C_NULL_PTR |
|
type(c_ptr) | vinvt_d = C_NULL_PTR |
|
type(c_ptr) | w_d = C_NULL_PTR |
|
In SEM, the solution fields are represented as a linear combination of basis functions for a particular function space. Thus, the properties of the space define that of the solution. The global SEM basis is never build, but is implictly defined by the local basis for each element. The latter is polynomial, and is therefore defined by the order of the polys and the selected locations of the nodes for storing the solution. In SEM, the latter coincides with a Gaussian quadrature (GL, GLL, etc.)
- Note
- The standard variable name for the
space_t
type in Neko is Xh
.
- Warning
- Although the type has separate members for the poly orders in x, y, and z, in the current implementation these are forced to be equal.
Definition at line 62 of file space.f90.