80  use, 
intrinsic :: iso_c_binding
 
   87     real(kind=
rp), 
allocatable :: xx(:,:)
 
   88     real(kind=
rp), 
allocatable :: bb(:,:)
 
   89     real(kind=
rp), 
allocatable :: xbar(:)
 
   90     type(c_ptr), 
allocatable :: xx_d(:)
 
   91     type(c_ptr), 
allocatable :: bb_d(:)
 
   92     type(c_ptr) :: xbar_d = c_null_ptr
 
   93     type(c_ptr) :: alpha_d = c_null_ptr
 
   94     type(c_ptr) :: xx_d_d = c_null_ptr
 
   95     type(c_ptr) :: bb_d_d = c_null_ptr
 
   97     real(kind=
rp) :: tol = 1e-7_rp
 
   99     real(kind=
rp) :: proj_res
 
  100     integer :: proj_m = 0
 
  101     integer :: activ_step 
 
 
  117    integer, 
intent(in) :: n
 
  118    integer, 
optional, 
intent(in) :: L, activ_step
 
  120    integer(c_size_t) :: ptr_size
 
  132    if (
present(activ_step)) 
then 
  133       this%activ_step = activ_step
 
  140    allocate(this%xx(n,this%L))
 
  141    allocate(this%bb(n,this%L))
 
  142    allocate(this%xbar(n))
 
  143    allocate(this%xx_d(this%L))
 
  144    allocate(this%bb_d(this%L))
 
  145    call rzero(this%xbar,n)
 
  147       call rzero(this%xx(1,i),n)
 
  148       call rzero(this%bb(1,i),n)
 
  153       call device_alloc(this%alpha_d, int(c_sizeof(dummy)*this%L,c_size_t))
 
  159          this%xx_d(i) = c_null_ptr
 
  160          call device_map(this%xx(:,i), this%xx_d(i), n)
 
  162          this%bb_d(i) = c_null_ptr
 
  163          call device_map(this%bb(:,i), this%bb_d(i), n)
 
  167       ptr_size = c_sizeof(c_null_ptr) * this%L
 
  169       ptr = c_loc(this%xx_d)
 
  173       ptr = c_loc(this%bb_d)
 
 
  184    if (
allocated(this%xx)) 
then 
  187    if (
allocated(this%bb)) 
then 
  190    if (
allocated(this%xbar)) 
then 
  191       deallocate(this%xbar)
 
  193    if (
allocated(this%xx_d)) 
then 
  195          if (c_associated(this%xx_d(i))) 
then 
  200    if (c_associated(this%xx_d_d)) 
then 
  203    if (c_associated(this%xbar_d)) 
then 
  206    if (c_associated(this%alpha_d)) 
then 
  209    if (
allocated(this%bb_d)) 
then 
  211          if (c_associated(this%bb_d(i))) 
then 
  216    if (c_associated(this%bb_d_d)) 
then 
 
  224    integer, 
intent(inout) :: n
 
  225    real(kind=
rp), 
intent(inout), 
dimension(n) :: b
 
  226    integer, 
intent(in) :: tstep
 
  227    class(
coef_t), 
intent(inout) :: coef
 
  229    character(len=*), 
optional :: string
 
  231    if( tstep .gt. this%activ_step .and. this%L .gt. 0) 
then 
  232       if (dt_controller%if_variable_dt) 
then 
  233          if (dt_controller%dt_last_change .eq. 0) 
then  
  235          else if (dt_controller%dt_last_change .gt. this%activ_step - 1) 
then 
  238             call this%project_on(b, coef, n)
 
  239             if (
present(string)) 
then 
  240                call this%log_info(string)
 
  244          call this%project_on(b, coef, n)
 
  245          if (
present(string)) 
then 
  246             call this%log_info(string)
 
 
  255    integer, 
intent(inout) :: n
 
  256    class(
ax_t), 
intent(inout) :: Ax
 
  257    class(
coef_t), 
intent(inout) :: coef
 
  259    type(
gs_t), 
intent(inout) :: gs_h
 
  260    real(kind=
rp), 
intent(inout), 
dimension(n) :: x
 
  261    integer, 
intent(in) :: tstep
 
  264    if (tstep .gt. this%activ_step .and. this%L .gt. 0) 
then 
  265       if (.not.(dt_controller%if_variable_dt) .or. &
 
  266       (dt_controller%dt_last_change .gt. this%activ_step - 1)) 
then 
  267          call this%project_back(x, ax, coef, bclst, gs_h, n)
 
 
  275    integer, 
intent(inout) :: n
 
  276    class(
coef_t), 
intent(inout) :: coef
 
  277    real(kind=
rp), 
intent(inout), 
dimension(n) :: b
 
 
  289    integer, 
intent(inout) :: n
 
  290    class(
ax_t), 
intent(inout) :: Ax
 
  291    class(
coef_t), 
intent(inout) :: coef
 
  293    type(
gs_t), 
intent(inout) :: gs_h
 
  294    real(kind=
rp), 
intent(inout), 
dimension(n) :: x
 
  301       if (this%m .gt. 0) 
call device_add2(x_d,this%xbar_d,n)      
 
  302       if (this%m .eq. this%L) 
then 
  305          this%m = min(this%m+1,this%L)
 
  311       if (this%m.gt.0) 
call add2(x,this%xbar,n)      
 
  312       if (this%m .eq. this%L) 
then 
  315          this%m = min(this%m+1,this%L)
 
  318       call copy        (this%xx(1,this%m),x,n)   
 
  321    call ax%compute(this%bb(1,this%m), x, coef, coef%msh, coef%Xh)
 
  322    call gs_h%gs_op_vector(this%bb(1,this%m), n, gs_op_add)
 
 
  337    integer, 
intent(inout) :: n
 
  338    class(
coef_t), 
intent(inout) :: coef
 
  339    real(kind=
rp), 
intent(inout), 
dimension(n) :: b
 
  340    integer :: i, j, k, l, ierr
 
  341    real(kind=
rp) :: work(this%L), alpha(this%L), s
 
  343    associate(xbar => this%xbar, xx => this%xx, &
 
  346      if (this%m .le. 0) 
return 
  349      call rzero(alpha, this%m)
 
  350      this%proj_res = sqrt(
glsc3(b,b,coef%mult,n)/coef%volume)
 
  357               s = s + xx(i+l,k) * coef%mult(i+l,1,1,1) * b(i+l)
 
  359            alpha(k) = alpha(k) + s
 
  364      call mpi_allreduce(mpi_in_place, alpha, this%m, &
 
  367      call rzero(work, this%m)
 
  372            xbar(i+l) = alpha(1) * xx(i+l,1)
 
  373            b(i+l) = b(i+l) - alpha(1) * bb(i+l,1)
 
  377               xbar(i+l) = xbar(i+l) + alpha(k) * xx(i+l,k)
 
  378               b(i+l) = b(i+l)- alpha(k) * bb(i+l,k)
 
  385               s = s + xx(i+l,k) * coef%mult(i+l,1,1,1) * b(i+l)
 
  387            work(k) = work(k) + s
 
  391      call mpi_allreduce(work, alpha, this%m, &
 
  398               xbar(i+l) = xbar(i+l) + alpha(k) * xx(i+l,k)
 
  399               b(i+l) = b(i+l) - alpha(k) * bb(i+l,k)
 
 
  408    integer, 
intent(inout) :: n
 
  409    class(coef_t), 
intent(inout) :: coef
 
  410    real(kind=rp), 
intent(inout), 
dimension(n) :: b
 
  411    real(kind=rp) :: alpha(this%L)
 
  414    b_d = device_get_ptr(b)
 
  416    associate(xbar_d => this%xbar_d, xx_d => this%xx_d, xx_d_d => this%xx_d_d, &
 
  417              bb_d => this%bb_d, bb_d_d => this%bb_d_d, alpha_d => this%alpha_d)
 
  419      if (this%m .le. 0) 
return 
  423      this%proj_res = sqrt(device_glsc3(b_d,b_d,coef%mult_d,n)/coef%volume)
 
  425      if (neko_device_mpi .and. (neko_bcknd_opencl .ne. 1)) 
then 
  426         call device_proj_on(alpha_d, b_d, xx_d_d, bb_d_d, &
 
  427              coef%mult_d, xbar_d, this%m, n)
 
  429         if (neko_bcknd_opencl .eq. 1) 
then 
  431               alpha(i) = device_glsc3(b_d,xx_d(i),coef%mult_d,n)
 
  434            call device_glsc3_many(alpha,b_d,xx_d_d,coef%mult_d,this%m,n)
 
  435            call device_memcpy(alpha, alpha_d, this%m, &
 
  436                               host_to_device, sync=.false.)
 
  438         call device_rzero(xbar_d, n)
 
  439         if (neko_bcknd_opencl .eq. 1) 
then 
  441               call device_add2s2(xbar_d, xx_d(i), alpha(i), n)
 
  443            call cmult(alpha, -1.0_rp, this%m)
 
  445            call device_add2s2_many(xbar_d, xx_d_d, alpha_d, this%m, n)
 
  446            call device_cmult(alpha_d, -1.0_rp, this%m)
 
  449         if (neko_bcknd_opencl .eq. 1) 
then 
  451               call device_add2s2(b_d, bb_d(i), alpha(i), n)
 
  452               alpha(i) = device_glsc3(b_d,xx_d(i),coef%mult_d,n)
 
  455            call device_add2s2_many(b_d, bb_d_d, alpha_d, this%m, n)
 
  456            call device_glsc3_many(alpha,b_d,xx_d_d,coef%mult_d,this%m,n)
 
  457            call device_memcpy(alpha, alpha_d, this%m, &
 
  458                               host_to_device, sync=.false.)
 
  461         if (neko_bcknd_opencl .eq. 1) 
then 
  463               call device_add2s2(xbar_d, xx_d(i), alpha(i), n)
 
  464               call cmult(alpha, -1.0_rp, this%m)
 
  465               call device_add2s2(b_d, bb_d(i), alpha(i), n)
 
  468            call device_add2s2_many(xbar_d, xx_d_d, alpha_d, this%m, n)
 
  469            call device_cmult(alpha_d, -1.0_rp, this%m)
 
  470            call device_add2s2_many(b_d, bb_d_d, alpha_d, this%m, n)
 
 
  480    integer, 
intent(inout) :: n
 
  481    type(c_ptr), 
dimension(this%L) :: xx_d, bb_d
 
  483    real(kind=rp) :: nrm, scl
 
  484    real(kind=rp) :: alpha(this%L)
 
  487    associate(m => this%m,  xx_d_d => this%xx_d_d, &
 
  488              bb_d_d => this%bb_d_d, alpha_d => this%alpha_d)
 
  492      if (neko_device_mpi .and. (neko_bcknd_opencl .ne. 1)) 
then 
  493         call device_project_ortho(alpha_d, bb_d(m), xx_d_d, bb_d_d, &
 
  494              w_d, xx_d(m), this%m, n, nrm)
 
  496         if (neko_bcknd_opencl .eq. 1)
then 
  498               alpha(i) = device_glsc3(bb_d(m),xx_d(i),w_d,n)
 
  501            call device_glsc3_many(alpha,bb_d(m),xx_d_d,w_d,m,n)
 
  504         call cmult(alpha, -1.0_rp,m)
 
  505         if (neko_bcknd_opencl .eq. 1)
then 
  507               call device_add2s2(xx_d(m),xx_d(i),alpha(i), n)
 
  508               call device_add2s2(bb_d(m),bb_d(i),alpha(i),n)
 
  510               alpha(i) = device_glsc3(bb_d(m),xx_d(i),w_d,n)
 
  513            call device_memcpy(alpha, alpha_d, this%m, &
 
  514                               host_to_device, sync=.false.)
 
  515            call device_add2s2_many(xx_d(m),xx_d_d,alpha_d,m-1,n)
 
  516            call device_add2s2_many(bb_d(m),bb_d_d,alpha_d,m-1,n)
 
  518            call device_glsc3_many(alpha,bb_d(m),xx_d_d,w_d,m,n)
 
  520         call cmult(alpha, -1.0_rp,m)
 
  521         if (neko_bcknd_opencl .eq. 1)
then 
  523               call device_add2s2(xx_d(m),xx_d(i),alpha(i),n)
 
  524               call device_add2s2(bb_d(m),bb_d(i),alpha(i),n)
 
  525               alpha(i) =  device_glsc3(bb_d(m),xx_d(i),w_d,n)
 
  528            call device_memcpy(alpha, alpha_d, m, &
 
  529                               host_to_device, sync=.false.)
 
  530            call device_add2s2_many(xx_d(m),xx_d_d,alpha_d,m-1,n)
 
  531            call device_add2s2_many(bb_d(m),bb_d_d,alpha_d,m-1,n)
 
  532            call device_glsc3_many(alpha,bb_d(m),xx_d_d,w_d,m,n)
 
  536      alpha(m) = device_glsc3(xx_d(m), w_d, bb_d(m), n)
 
  537      alpha(m) = sqrt(alpha(m))
 
  539      if(alpha(m) .gt. this%tol*nrm) 
then  
  540         scl = 1.0_rp / alpha(m)
 
  541         call device_cmult(xx_d(m), scl, n)
 
  542         call device_cmult(bb_d(m), scl, n)
 
  546         if(pe_rank .eq. 0) 
then 
  547            call neko_warning(
'New vector not linearly indepependent!')
 
 
  559    integer, 
intent(inout) :: n
 
  560    real(kind=rp), 
dimension(n, this%L), 
intent(inout) :: xx, bb
 
  561    real(kind=rp), 
dimension(n), 
intent(inout) :: w
 
  562    real(kind=rp) :: nrm, scl1, scl2, c, s
 
  563    real(kind=rp) :: alpha(this%L), beta(this%L)
 
  564    integer :: i, j, k, l, h, ierr
 
  566    associate(m => this%m)
 
  573      do i = 1, n, neko_blk_size
 
  574         j = min(neko_blk_size, n-i+1)
 
  579               s = s + xx(i+l,k) * w(i+l) * bb(i+l,m)
 
  580               c = c + bb(i+l,k) * w(i+l) * xx(i+l,m)
 
  582            alpha(k) = alpha(k) + 0.5_rp * (s + c)
 
  586      call mpi_allreduce(mpi_in_place, alpha, this%m, &
 
  587           mpi_real_precision, mpi_sum, neko_comm, ierr)
 
  592      do i = 1, n, neko_blk_size
 
  593         j = min(neko_blk_size, n-i+1)
 
  596               xx(i+l,m) = xx(i+l,m) - alpha(k) * xx(i+l,k)
 
  597               bb(i+l,m) = bb(i+l,m) - alpha(k) * bb(i+l,k)
 
  603      do i = 1, n, neko_blk_size
 
  604         j = min(neko_blk_size, n-i+1)
 
  609               s = s + xx(i+l,k) * w(i+l) * bb(i+l,m)
 
  610               c = c + bb(i+l,k) * w(i+l) * xx(i+l,m)
 
  612            beta(k) = beta(k) + 0.5_rp * (s + c)
 
  616      call mpi_allreduce(mpi_in_place, beta, this%m-1, &
 
  617           mpi_real_precision, mpi_sum, neko_comm, ierr)
 
  621      do i = 1, n, neko_blk_size
 
  622         j = min(neko_blk_size,n-i+1)
 
  625               xx(i+l,m) = xx(i+l,m) - beta(k) * xx(i+l,k)
 
  626               bb(i+l,m) = bb(i+l,m) - beta(k) * bb(i+l,k)
 
  631            s = s + xx(i+l,m) * w(i+l) * bb(i+l,m)
 
  633         alpha(m) = alpha(m) + s
 
  636         alpha(k) = alpha(k) + beta(k)
 
  640      call mpi_allreduce(mpi_in_place, alpha(m), 1, &
 
  641           mpi_real_precision, mpi_sum, neko_comm, ierr)
 
  642      alpha(m) = sqrt(alpha(m))
 
  645      if(alpha(m) .gt. this%tol*nrm) 
then  
  647         scl1 = 1.0_rp / alpha(m)
 
  649            xx(1+i,m) = scl1 * xx(1+i,m)
 
  650            bb(1+i,m) = scl1 * bb(1+i,m) 
 
  655         if(pe_rank .eq. 0) 
then 
  656            call neko_warning(
'New vector not linearly indepependent!')
 
 
  667    character(len=*) :: string
 
  668    character(len=LOG_SIZE) :: log_buf
 
  670    if (this%proj_m .gt. 0) 
then 
  671       write(log_buf, 
'(A,A)') 
'Projection ', string
 
  672       call neko_log%message(log_buf)
 
  673       write(log_buf, 
'(A,A)') 
'Proj. vec.:',
'   Orig. residual:' 
  674       call neko_log%message(log_buf)
 
  675       write(log_buf, 
'(I11,3x, E15.7,5x)')  this%proj_m, this%proj_res
 
  676       call neko_log%message(log_buf)
 
 
  683    integer, 
intent(in) :: n
 
  690       if (neko_bcknd_device .eq. 1) 
then 
  691          call device_rzero(this%xx_d(i), n)
 
  692          call device_rzero(this%xx_d(i), n)
 
  695             this%xx(j,i) = 0.0_rp
 
  696             this%bb(j,i) = 0.0_rp
 
 
Return the device pointer for an associated Fortran array.
 
Map a Fortran array to a device (allocate and associate)
 
Copy data between host and device (or device and device)
 
Defines a Matrix-vector product.
 
Defines a boundary condition.
 
subroutine, public bc_list_apply_scalar(bclst, x, n, t, tstep)
Apply a list of boundary conditions to a scalar field.
 
type(mpi_comm) neko_comm
MPI communicator.
 
type(mpi_datatype) mpi_real_precision
MPI type for working precision of REAL types.
 
subroutine, public device_add2(a_d, b_d, n)
Vector addition .
 
subroutine, public device_rzero(a_d, n)
Zero a real vector.
 
subroutine, public device_add2s2(a_d, b_d, c1, n)
Vector addition with scalar multiplication  (multiplication on first argument)
 
subroutine, public device_cmult(a_d, c, n)
Multiplication by constant c .
 
subroutine, public device_add2s2_many(y_d, x_d_d, a_d, j, n)
 
real(kind=rp) function, public device_glsc3(a_d, b_d, c_d, n)
Weighted inner product .
 
subroutine, public device_copy(a_d, b_d, n)
Copy a vector .
 
subroutine, public device_glsc3_many(h, w_d, v_d_d, mult_d, j, n)
 
Interface for device projection.
 
subroutine, public device_proj_on(alpha_d, b_d, x_d_d, b_d_d, mult_d, xbar_d, j, n)
 
subroutine, public device_project_ortho(alpha_d, b_d, x_d_d, b_d_d, w_d, xm_d, j, n, nrm)
 
Device abstraction, common interface for various accelerators.
 
integer, parameter, public host_to_device
 
subroutine, public device_free(x_d)
Deallocate memory on the device.
 
subroutine, public device_alloc(x_d, s)
Allocate memory on the device.
 
type(log_t), public neko_log
Global log stream.
 
integer, parameter, public log_size
 
subroutine, public cmult(a, c, n)
Multiplication by constant c .
 
real(kind=rp) function, public glsc3(a, b, c, n)
Weighted inner product .
 
subroutine, public add2(a, b, n)
Vector addition .
 
subroutine, public copy(a, b, n)
Copy a vector .
 
subroutine, public rzero(a, n)
Zero a real vector.
 
integer, parameter neko_blk_size
 
integer, parameter neko_bcknd_device
 
integer, parameter, public c_rp
 
integer, parameter, public rp
Global precision used in computations.
 
subroutine, public profiler_start_region(name, region_id)
Started a named (name) profiler region.
 
subroutine, public profiler_end_region(name, region_id)
End the most recently started profiler region.
 
Project x onto X, the space of old solutions and back again.
 
subroutine device_project_on(this, b, coef, n)
 
subroutine projection_free(this)
 
subroutine bcknd_clear(this, n)
 
subroutine device_proj_ortho(this, xx_d, bb_d, w_d, n)
 
subroutine bcknd_project_back(this, x, ax, coef, bclst, gs_h, n)
 
subroutine cpu_proj_ortho(this, xx, bb, w, n)
 
subroutine bcknd_project_on(this, b, coef, n)
 
subroutine projection_init(this, n, l, activ_step)
 
subroutine cpu_project_on(this, b, coef, n)
 
subroutine projection_pre_solving(this, b, tstep, coef, n, dt_controller, string)
 
subroutine projection_post_solving(this, x, ax, coef, bclst, gs_h, n, tstep, dt_controller)
 
subroutine print_proj_info(this, string)
 
Implements type time_step_controller.
 
subroutine, public neko_warning(warning_msg)
Reports a warning to standard output.
 
Base type for a matrix-vector product providing .
 
A list of boundary conditions.
 
Coefficients defined on a given (mesh, ) tuple. Arrays use indices (i,j,k,e): element e,...
 
Provides a tool to set time step dt.