Processing math: 100%
Neko 0.9.1
A portable framework for high-order spectral element flow simulations
All Classes Namespaces Files Functions Variables Typedefs Enumerator Macros Pages
math.f90 File Reference

Go to the source code of this file.

Data Types

interface  math::abscmp
 
interface  math::sort
 
interface  math::swap
 
interface  math::reord
 
interface  math::flipv
 
interface  math::relcmp
 
interface  math::pwmax
 
interface  math::pwmin
 

Modules

module  math
 

Functions/Subroutines

pure logical function math::sabscmp (x, y)
 Return single precision absolute comparison | x - y | < \epsilon .
 
pure logical function math::dabscmp (x, y)
 Return double precision absolute comparison | x - y | < \epsilon .
 
pure logical function math::qabscmp (x, y)
 Return double precision absolute comparison | x - y | < \epsilon .
 
pure logical function math::srelcmp (x, y, eps)
 Return single precision relative comparison | x - y |<= \epsilon*|y| .
 
pure logical function math::drelcmp (x, y, eps)
 Return double precision relative comparison | x - y |/|y| < \epsilon .
 
pure logical function math::qrelcmp (x, y, eps)
 Return quad precision relative comparison | x - y |/|y| < \epsilon .
 
subroutine, public math::rzero (a, n)
 Zero a real vector.
 
subroutine, public math::izero (a, n)
 Zero an integer vector.
 
subroutine, public math::row_zero (a, m, n, e)
 Sets row e to 0 in matrix a.
 
subroutine, public math::rone (a, n)
 Set all elements to one.
 
subroutine, public math::copy (a, b, n)
 Copy a vector a = b .
 
subroutine, public math::masked_copy (a, b, mask, n, m)
 Copy a masked vector a(mask) = b(mask) .
 
subroutine, public math::masked_red_copy (a, b, mask, n, m)
 Copy a masked vector to reduced contigous vector a = b(mask) .
 
subroutine, public math::cfill_mask (a, c, size, mask, mask_size)
 Fill a constant to a masked vector. a_i = c, for i in mask .
 
subroutine, public math::cmult (a, c, n)
 Multiplication by constant c a = c \cdot a .
 
subroutine, public math::cadd (a, s, n)
 Add a scalar to vector a_i = a_i + s .
 
subroutine, public math::cadd2 (a, b, s, n)
 Add a scalar to vector a_i = b_i + s .
 
subroutine, public math::cfill (a, c, n)
 Set all elements to a constant c a = c .
 
real(kind=rp) function, public math::glsum (a, n)
 Sum a vector of length n.
 
real(kind=rp) function, public math::glmax (a, n)
 Max of a vector of length n.
 
integer function, public math::glimax (a, n)
 Max of an integer vector of length n.
 
real(kind=rp) function, public math::glmin (a, n)
 Min of a vector of length n.
 
integer function, public math::glimin (a, n)
 Min of an integer vector of length n.
 
subroutine, public math::chsign (a, n)
 Change sign of vector a = -a .
 
real(kind=rp) function, public math::vlmax (vec, n)
 maximum value of a vector of length n
 
real(kind=rp) function, public math::vlmin (vec, n)
 minimun value of a vector of length n
 
subroutine, public math::invcol1 (a, n)
 Invert a vector a = 1 / a .
 
subroutine, public math::invcol3 (a, b, c, n)
 Invert a vector a = b / c .
 
subroutine, public math::invers2 (a, b, n)
 Compute inverted vector a = 1 / b .
 
subroutine, public math::vcross (u1, u2, u3, v1, v2, v3, w1, w2, w3, n)
 Compute a cross product u = v \times w assuming vector components u = (u_1, u_2, u_3) etc.
 
subroutine, public math::vdot2 (dot, u1, u2, v1, v2, n)
 Compute a dot product dot = u \cdot v (2-d version) assuming vector components u = (u_1, u_2, u_3) etc.
 
subroutine, public math::vdot3 (dot, u1, u2, u3, v1, v2, v3, n)
 Compute a dot product dot = u \cdot v (3-d version) assuming vector components u = (u_1, u_2, u_3) etc.
 
real(kind=rp) function, public math::vlsc3 (u, v, w, n)
 Compute multiplication sum dot = u \cdot v \cdot w .
 
real(kind=rp) function, public math::vlsc2 (u, v, n)
 Compute multiplication sum dot = u \cdot v \cdot w .
 
subroutine, public math::add2 (a, b, n)
 Vector addition a = a + b .
 
subroutine, public math::add3 (a, b, c, n)
 Vector addition a = b + c .
 
subroutine, public math::add4 (a, b, c, d, n)
 Vector addition a = b + c + d.
 
subroutine, public math::sub2 (a, b, n)
 Vector substraction a = a - b .
 
subroutine, public math::sub3 (a, b, c, n)
 Vector subtraction a = b - c .
 
subroutine, public math::add2s1 (a, b, c1, n)
 Vector addition with scalar multiplication a = c_1 a + b (multiplication on first argument)
 
subroutine, public math::add2s2 (a, b, c1, n)
 Vector addition with scalar multiplication a = a + c_1 b (multiplication on second argument)
 
subroutine, public math::addsqr2s2 (a, b, c1, n)
 Returns a = a + c1 * (b * b ).
 
subroutine, public math::cmult2 (a, b, c, n)
 Multiplication by constant c a = c \cdot b .
 
subroutine, public math::invcol2 (a, b, n)
 Vector division a = a / b .
 
subroutine, public math::col2 (a, b, n)
 Vector multiplication a = a \cdot b .
 
subroutine, public math::col3 (a, b, c, n)
 Vector multiplication with 3 vectors a = b \cdot c .
 
subroutine, public math::subcol3 (a, b, c, n)
 Returns a = a - b*c .
 
subroutine, public math::add3s2 (a, b, c, c1, c2, n)
 Returns a = c1 * b + c2 * c .
 
subroutine, public math::subcol4 (a, b, c, d, n)
 Returns a = a - b*c*d .
 
subroutine, public math::addcol3 (a, b, c, n)
 Returns a = a + b*c .
 
subroutine, public math::addcol4 (a, b, c, d, n)
 Returns a = a + b*c*d .
 
subroutine, public math::ascol5 (a, b, c, d, e, n)
 Returns a = b \dot c - d \cdot e .
 
subroutine, public math::p_update (a, b, c, c1, c2, n)
 Returns a = b \dot c1 ( a - c2 \cdot c ).
 
subroutine, public math::x_update (a, b, c, c1, c2, n)
 Returns a = b \dot c1 ( a - c2 \cdot c ).
 
real(kind=rp) function, public math::glsc2 (a, b, n)
 Weighted inner product a^T b .
 
real(kind=rp) function, public math::glsc3 (a, b, c, n)
 Weighted inner product a^T b c .
 
real(kind=rp) function, public math::glsc4 (a, b, c, d, n)
 
subroutine math::sortrp (a, ind, n)
 Heap Sort for double precision arrays.
 
subroutine math::sorti4 (a, ind, n)
 Heap Sort for single integer arrays.
 
subroutine math::swapdp (b, ind, n)
 sort double precision array acording to ind vector
 
subroutine math::swapi4 (b, ind, n)
 sort single integer array acording to ind vector
 
subroutine math::reorddp (b, ind, n)
 reorder double precision array - inverse of swap
 
subroutine math::reordi4 (b, ind, n)
 reorder single integer array - inverse of swap
 
subroutine math::flipvdp (b, ind, n)
 Flip double precision vector b and ind.
 
subroutine math::flipvi4 (b, ind, n)
 Flip single integer vector b and ind.
 
subroutine, public math::absval (a, n)
 Take the absolute value of an array.
 
subroutine math::pwmax_vec2 (a, b, n)
 Point-wise maximum of two vectors a = \max(a, b) .
 
subroutine math::pwmax_vec3 (a, b, c, n)
 Point-wise maximum of two vectors a = \max(b, c) .
 
subroutine math::pwmax_scal2 (a, b, n)
 Point-wise maximum of scalar and vector a = \max(a, b) .
 
subroutine math::pwmax_scal3 (a, b, c, n)
 Point-wise maximum of scalar and vector a = \max(b, c) .
 
subroutine math::pwmin_vec2 (a, b, n)
 Point-wise minimum of two vectors a = \min(a, b) .
 
subroutine math::pwmin_vec3 (a, b, c, n)
 Point-wise minimum of two vectors a = \min(b, c) .
 
subroutine math::pwmin_sca2 (a, b, n)
 Point-wise minimum of scalar and vector a = \min(a, b) .
 
subroutine math::pwmin_sca3 (a, b, c, n)
 Point-wise minimum of scalar and vector a = \min(b, c) .
 

Variables

real(kind=rp), parameter, public math::neko_eps = epsilon(1.0_rp)
 Machine epsilon \epsilon .
 
real(kind=rp), parameter, public math::neko_m_ln2 = log(2.0_rp)
  ln(2)
 
real(kind=rp), parameter, public math::pi = 4._rp*atan(1._rp)
  \pi