Neko 0.9.99
A portable framework for high-order spectral element flow simulations
Loading...
Searching...
No Matches
field_math.f90 File Reference

Go to the source code of this file.

Modules

module  field_math
 

Functions/Subroutines

subroutine, public field_math::field_rzero (a, n)
 Zero a real vector.
 
subroutine, public field_math::field_rone (a, n)
 Set all elements to one.
 
subroutine, public field_math::field_copy (a, b, n)
 Copy a vector \( a = b \).
 
subroutine, public field_math::field_cmult (a, c, n)
 Multiplication by constant c \( a = c \cdot a \).
 
subroutine, public field_math::field_cadd (a, s, n)
 Add a scalar to vector \( a = \sum a_i + s \).
 
subroutine, public field_math::field_cfill (a, c, n)
 Set all elements to a constant c \( a = c \).
 
subroutine, public field_math::field_invcol1 (a, n)
 Invert a vector \( a = 1 / a \).
 
subroutine, public field_math::field_vdot3 (dot, u1, u2, u3, v1, v2, v3, n)
 Compute a dot product \( dot = u \cdot v \) (3-d version) assuming vector components \( u = (u_1, u_2, u_3) \) etc.
 
subroutine, public field_math::field_add2 (a, b, n)
 Vector addition \( a = a + b \).
 
subroutine field_math::field_add3 (a, b, c, n)
 Vector addition \( a = b + c \).
 
subroutine field_math::field_add4 (a, b, c, d, n)
 Vector addition \( a = b + c + d \).
 
subroutine, public field_math::field_sub2 (a, b, n)
 Vector substraction \( a = a - b \).
 
subroutine, public field_math::field_sub3 (a, b, c, n)
 Vector subtraction \( a = b - c \).
 
subroutine, public field_math::field_add2s1 (a, b, c1, n)
 Vector addition with scalar multiplication \( a = c_1 a + b \) (multiplication on first argument)
 
subroutine, public field_math::field_add2s2 (a, b, c1, n)
 Vector addition with scalar multiplication \( a = a + c_1 b \) (multiplication on second argument)
 
subroutine, public field_math::field_addsqr2s2 (a, b, c1, n)
 Returns \( a = a + c1 * (b * b )\).
 
subroutine, public field_math::field_cmult2 (a, b, c, n)
 Multiplication by constant c \( a = c \cdot b \).
 
subroutine, public field_math::field_invcol2 (a, b, n)
 Vector division \( a = a / b \).
 
subroutine, public field_math::field_col2 (a, b, n)
 Vector multiplication \( a = a \cdot b \).
 
subroutine, public field_math::field_col3 (a, b, c, n)
 Vector multiplication with 3 vectors \( a = b \cdot c \).
 
subroutine, public field_math::field_subcol3 (a, b, c, n)
 Returns \( a = a - b*c \).
 
subroutine, public field_math::field_add3s2 (a, b, c, c1, c2, n)
 Returns \( a = c1 * b + c2 * c \).
 
subroutine, public field_math::field_addcol3 (a, b, c, n)
 Returns \( a = a + b*c \).
 
subroutine, public field_math::field_addcol4 (a, b, c, d, n)
 Returns \( a = a + b*c*d \).
 
real(kind=rp) function, public field_math::field_glsum (a, n)
 
real(kind=rp) function, public field_math::field_glsc2 (a, b, n)
 
real(kind=rp) function, public field_math::field_glsc3 (a, b, c, n)