Neko 0.9.99
A portable framework for high-order spectral element flow simulations
Loading...
Searching...
No Matches
fast3d.f90
Go to the documentation of this file.
1! Copyright (c) 2008-2020, UCHICAGO ARGONNE, LLC.
2!
3! The UChicago Argonne, LLC as Operator of Argonne National
4! Laboratory holds copyright in the Software. The copyright holder
5! reserves all rights except those expressly granted to licensees,
6! and U.S. Government license rights.
7!
8! Redistribution and use in source and binary forms, with or without
9! modification, are permitted provided that the following conditions
10! are met:
11!
12! 1. Redistributions of source code must retain the above copyright
13! notice, this list of conditions and the disclaimer below.
14!
15! 2. Redistributions in binary form must reproduce the above copyright
16! notice, this list of conditions and the disclaimer (as noted below)
17! in the documentation and/or other materials provided with the
18! distribution.
19!
20! 3. Neither the name of ANL nor the names of its contributors
21! may be used to endorse or promote products derived from this software
22! without specific prior written permission.
23!
24! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27! FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28! UCHICAGO ARGONNE, LLC, THE U.S. DEPARTMENT OF
29! ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
31! TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32! DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33! THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36!
37! Additional BSD Notice
38! ---------------------
39! 1. This notice is required to be provided under our contract with
40! the U.S. Department of Energy (DOE). This work was produced at
41! Argonne National Laboratory under Contract
42! No. DE-AC02-06CH11357 with the DOE.
43!
44! 2. Neither the United States Government nor UCHICAGO ARGONNE,
45! LLC nor any of their employees, makes any warranty,
46! express or implied, or assumes any liability or responsibility for the
47! accuracy, completeness, or usefulness of any information, apparatus,
48! product, or process disclosed, or represents that its use would not
49! infringe privately-owned rights.
50!
51! 3. Also, reference herein to any specific commercial products, process,
52! or services by trade name, trademark, manufacturer or otherwise does
53! not necessarily constitute or imply its endorsement, recommendation,
54! or favoring by the United States Government or UCHICAGO ARGONNE LLC.
55! The views and opinions of authors expressed
56! herein do not necessarily state or reflect those of the United States
57! Government or UCHICAGO ARGONNE, LLC, and shall
58! not be used for advertising or product endorsement purposes.
59!
61module fast3d
62 use num_types, only : rp
63 use speclib
64 use math, only : rzero
65 implicit none
66 private
67
69
70contains
71
104 subroutine fd_weights_full(xi, x, n, m, c)
105 integer, intent(in) :: n
106 integer, intent(in) :: m
107 real(kind=rp), intent(in) :: x(0:n)
108 real(kind=rp), intent(out) :: c(0:n,0:m)
109 real(kind=rp), intent(in) :: xi
110 real(kind=xp) :: c1, c2, c3, c4, c5
111 integer :: i, j, k, mn
112
113 c1 = 1d0
114 c4 = x(0) - xi
115
116 do k = 0, m
117 do j = 0, n
118 c(j,k) = 0d0
119 end do
120 end do
121
122 c(0,0) = 1d0
123
124 do i = 1, n
125 mn = min(i,m)
126 c2 = 1d0
127 c5 = c4
128 c4 = x(i) - xi
129 do j = 0, i - 1
130 c3 = x(i) - x(j)
131 c2 = c2 * c3
132 do k = mn, 1, -1
133 c(i,k) = c1 * (k * c(i-1,k-1) - c5 * c(i-1,k)) / c2
134 end do
135 c(i,0) = -c1 * c5 * c(i-1,0) / c2
136 do k = mn, 1, -1
137 c(j,k) = (c4 * c(j,k) - k * c(j,k-1)) / c3
138 end do
139 c(j,0) = c4 * c(j,0) / c3
140 end do
141 c1 = c2
142 end do
143
144 end subroutine fd_weights_full
145
146
167 subroutine semhat(a, b, c, d, z, dgll, jgll, bgl, zgl, dgl, jgl, n, w)
168 integer, intent(in) :: n
169 real(kind=rp), intent(inout) :: a(0:n,0:n)
170 real(kind=rp), intent(inout) :: b(0:n)
171 real(kind=rp), intent(inout) :: c(0:n,0:n)
172 real(kind=rp), intent(inout) :: d(0:n,0:n)
173 real(kind=rp), intent(inout) :: z(0:n)
174 real(kind=rp), intent(inout) :: dgll(0:n,1:n-1),jgll(0:n,1:n-1)
175 real(kind=rp), intent(inout) :: bgl(1:n-1)
176 real(kind=rp), intent(inout) :: zgl(1:n-1)
177 real(kind=rp), intent(inout) :: dgl(1:n-1,0:n)
178 real(kind=rp), intent(inout) :: jgl(1:n-1,0:n)
179 real(kind=rp), intent(inout) :: w(0:2*n+1)
180 integer :: np, nm, n2, i, j, k
181 np = n+1
182 nm = n-1
183 n2 = n-2
184 call zwgll(z, b, np)
185 do i = 0,n
186 call fd_weights_full(z(i), z, n, 1, w)
187 do j = 0,n
188 d(i,j) = w(j+np) ! Derivative matrix
189 end do
190 end do
191
192 if (n.eq.1) return ! No interpolation for n=1
193
194 do i = 0,n
195 call fd_weights_full(z(i), z(1), n2, 1, w(1))
196 do j = 1,nm
197 jgll(i,j) = w(j ) ! Interpolation matrix
198 dgll(i,j) = w(j+nm) ! Derivative matrix
199 end do
200 end do
201 call rzero(a, np*np)
202 do j = 0,n
203 do i = 0,n
204 do k = 0,n
205 a(i,j) = a(i,j) + d(k,i)*b(k)*d(k,j)
206 end do
207 c(i,j) = b(i)*d(i,j)
208 end do
209 end do
210 call zwgl(zgl, bgl, nm)
211 do i = 1,n-1
212 call fd_weights_full(zgl(i), z, n, 1, w)
213 do j = 0,n
214 jgl(i,j) = w(j ) ! Interpolation matrix
215 dgl(i,j) = w(j+np) ! Derivative matrix
216 end do
217 end do
218 end subroutine semhat
219
242 subroutine setup_intp(jh, jht, z_to, z_from, n_to, n_from, derivative)
243 implicit none
244 integer, intent(in) :: n_to, n_from, derivative
245 real(kind=rp), intent(inout) :: jh(n_to, n_from), jht(n_from, n_to)
246 real(kind=rp), intent(inout) :: z_to(n_to), z_from(n_from)
247 real(kind=rp) :: w(n_from, 0:derivative)
248 integer :: i, j
249 do i = 1, n_to
250 ! This will assign w the weights for interpolating to point
251 ! zf(i) values at points zc
252 call fd_weights_full(z_to(i), z_from, n_from-1, derivative, w)
253
254 ! store each of the weights in the corresponding row/column
255 do j = 1, n_from
256 jh(i,j) = w(j, derivative)
257 jht(j,i) = w(j, derivative)
258 end do
259 end do
260 end subroutine setup_intp
261end module fast3d
Implements the derivative_t type.
Fast diagonalization methods from NEKTON.
Definition fast3d.f90:61
subroutine, public semhat(a, b, c, d, z, dgll, jgll, bgl, zgl, dgl, jgl, n, w)
Generate matrices for single element, 1D operators: a = Laplacian b = diagonal mass matrix c = convec...
Definition fast3d.f90:168
subroutine, public fd_weights_full(xi, x, n, m, c)
Compute finite-difference stencil weights for evaluating derivatives up to order at a point.
Definition fast3d.f90:105
subroutine, public setup_intp(jh, jht, z_to, z_from, n_to, n_from, derivative)
Compute interpolation weights for points z_to using values at points z_from.
Definition fast3d.f90:243
Definition math.f90:60
subroutine, public rzero(a, n)
Zero a real vector.
Definition math.f90:194
integer, parameter, public xp
Definition num_types.f90:14
integer, parameter, public rp
Global precision used in computations.
Definition num_types.f90:12
LIBRARY ROUTINES FOR SPECTRAL METHODS.
Definition speclib.f90:148
subroutine dgll(d, dt, z, nz, nzd)
Definition speclib.f90:865
subroutine zwgll(z, w, np)
Definition speclib.f90:169
subroutine zwgl(z, w, np)
Generate NP Gauss Legendre points Z and weights W associated with Jacobi polynomial ....
Definition speclib.f90:161