Defines a mesh.  
 | 
| subroutine  | mesh_init_nelv (this, gdim, nelv) | 
|   | Initialise a mesh this with nelv elements.  
  | 
|   | 
| subroutine  | mesh_init_dist (this, gdim, dist) | 
|   | Initialise a mesh this based on a distribution dist.  
  | 
|   | 
| subroutine  | mesh_init_common (this) | 
|   | 
| subroutine  | mesh_free (this) | 
|   | Deallocate a mesh this.  
  | 
|   | 
| subroutine  | mesh_finalize (this) | 
|   | 
| subroutine  | mesh_generate_flags (this) | 
|   | 
| subroutine  | mesh_all_deformed (this) | 
|   | Set all elements as if they are deformed.  
  | 
|   | 
| subroutine  | mesh_generate_conn (this) | 
|   | Generate element-to-element connectivity.  
  | 
|   | 
| subroutine  | mesh_generate_external_facet_conn (this) | 
|   | Generate element-element connectivity via facets between PEs.  
  | 
|   | 
| subroutine  | mesh_generate_external_point_conn (this) | 
|   | Generate element-element connectivity via points between PEs.  
  | 
|   | 
| subroutine  | mesh_generate_edge_conn (this) | 
|   | Generate element-element connectivity via edges both between internal and between PEs.  
  | 
|   | 
| subroutine  | mesh_generate_facet_numbering (this) | 
|   | Generate a unique facet numbering.  
  | 
|   | 
| subroutine  | mesh_add_quad (this, el, el_glb, p1, p2, p3, p4) | 
|   | Add a quadrilateral element to the mesh this.  
  | 
|   | 
| subroutine  | mesh_add_hex (this, el, el_glb, p1, p2, p3, p4, p5, p6, p7, p8) | 
|   | Add a hexahedral element to the mesh this.  
  | 
|   | 
| subroutine  | mesh_add_point (this, p, idx) | 
|   | Add a unique point to the mesh.  
  | 
|   | 
| subroutine  | mesh_add_face (this, f) | 
|   | Add a unique face represented as a 4-tuple to the mesh.  
  | 
|   | 
| subroutine  | mesh_add_edge (this, e) | 
|   | Add a unique edge represented as a 2-tuple to the mesh.  
  | 
|   | 
| subroutine  | mesh_mark_curve_element (this, e, curve_data, curve_type) | 
|   | Mark element e as a curve element.  
  | 
|   | 
| subroutine  | mesh_mark_labeled_facet (this, f, e, label) | 
|   | Mark facet f in element e with label.  
  | 
|   | 
| subroutine  | mesh_mark_periodic_facet (this, f, e, pf, pe, pids) | 
|   | Mark facet f in element e as periodic with (pf, pe)  
  | 
|   | 
| subroutine  | mesh_get_facet_ids (this, f, e, pids) | 
|   | Get original ids of periodic points.  
  | 
|   | 
| subroutine  | mesh_reset_periodic_ids (this) | 
|   | Reset ids of periodic points to their original ids.  
  | 
|   | 
| subroutine  | mesh_create_periodic_ids (this, f, e, pf, pe) | 
|   | Creates common ids for matching periodic points.  
  | 
|   | 
| subroutine  | mesh_apply_periodic_facet (this, f, e, pf, pe, pids) | 
|   | Replaces the periodic point's id with a common id for matching periodic points.  
  | 
|   | 
| integer function  | mesh_get_local_point (this, p) | 
|   | Return the local id of a point p.  
  | 
|   | 
| integer function  | mesh_get_local_edge (this, e) | 
|   | Return the local id of an edge e.  
  | 
|   | 
| integer function  | mesh_get_local_facet (this, f) | 
|   | Return the local id of a face f.  
  | 
|   | 
| integer function  | mesh_get_global_edge (this, e) | 
|   | Return the global id of an edge e.  
  | 
|   | 
| integer function  | mesh_get_global_facet (this, f) | 
|   | Return the local id of a face f.  
  | 
|   | 
| integer function  | mesh_have_point_glb_idx (this, index) | 
|   | Check if the mesh has a point given its global index.  
  | 
|   | 
| logical function  | mesh_is_shared_point (this, p) | 
|   | Check if a point is shared.  
  | 
|   | 
| logical function  | mesh_is_shared_edge (this, e) | 
|   | Check if an edge is shared.  
  | 
|   | 
| logical function  | mesh_is_shared_facet (this, f) | 
|   | Check if a facet is shared.  
  | 
|   | 
| subroutine  | mesh_check_right_handedness (this) | 
|   | Check the correct orientation of the rst coordindates.  
  | 
|   | 
| real(kind=dp) function, public  | parallelepiped_signed_volume (p1, p2, p3, origin) | 
|   | Compute a signed volume of a parallelepiped formed by three vectors, in turn defined via three points, p1, p2, and p3 and an origin.  
  | 
|   |