Neko 0.9.99
A portable framework for high-order spectral element flow simulations
Loading...
Searching...
No Matches
sigma_cpu.f90
Go to the documentation of this file.
1! Copyright (c) 2023-2024, The Neko Authors
2! All rights reserved.
3!
4! Redistribution and use in source and binary forms, with or without
5! modification, are permitted provided that the following conditions
6! are met:
7!
8! * Redistributions of source code must retain the above copyright
9! notice, this list of conditions and the following disclaimer.
10!
11! * Redistributions in binary form must reproduce the above
12! copyright notice, this list of conditions and the following
13! disclaimer in the documentation and/or other materials provided
14! with the distribution.
15!
16! * Neither the name of the authors nor the names of its
17! contributors may be used to endorse or promote products derived
18! from this software without specific prior written permission.
19!
20! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23! FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24! COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25! INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26! BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27! LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29! LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30! ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31! POSSIBILITY OF SUCH DAMAGE.
32!
37
39 use num_types, only : rp
40 use field_list, only : field_list_t
43 use field, only : field_t
44 use operators, only : dudxyz
45 use coefs, only : coef_t
46 use gs_ops, only : gs_op_add
47 use math, only : neko_eps
48 implicit none
49 private
50
51 public :: sigma_compute_cpu
52
53contains
54
62 subroutine sigma_compute_cpu(t, tstep, coef, nut, delta, c)
63 real(kind=rp), intent(in) :: t
64 integer, intent(in) :: tstep
65 type(coef_t), intent(in) :: coef
66 type(field_t), intent(inout) :: nut
67 type(field_t), intent(in) :: delta
68 real(kind=rp), intent(in) :: c
69 ! This is the velocity gradient tensor
70 type(field_t), pointer :: g11, g12, g13, g21, g22, g23, g31, g32, g33
71 type(field_t), pointer :: u, v, w
72
73 real(kind=rp) :: sigg11, sigg12, sigg13, sigg22, sigg23, sigg33
74 real(kind=rp) :: sigma1, sigma2, sigma3
75 real(kind=rp) :: invariant1, invariant2, invariant3
76 real(kind=rp) :: alpha1, alpha2, alpha3
77 real(kind=rp) :: dsigma
78 real(kind=rp) :: pi_3 = 4.0_rp/3.0_rp*atan(1.0_rp)
79 real(kind=rp) :: tmp1
80 real(kind=rp) :: eps
81
82 integer :: temp_indices(9)
83 integer :: e, i
84
85 ! some constant
86 eps = neko_eps
87
88
89 ! get fields from registry
90 u => neko_field_registry%get_field_by_name("u")
91 v => neko_field_registry%get_field_by_name("v")
92 w => neko_field_registry%get_field_by_name("w")
93
94 call neko_scratch_registry%request_field(g11, temp_indices(1))
95 call neko_scratch_registry%request_field(g12, temp_indices(2))
96 call neko_scratch_registry%request_field(g13, temp_indices(3))
97 call neko_scratch_registry%request_field(g21, temp_indices(4))
98 call neko_scratch_registry%request_field(g22, temp_indices(5))
99 call neko_scratch_registry%request_field(g23, temp_indices(6))
100 call neko_scratch_registry%request_field(g31, temp_indices(7))
101 call neko_scratch_registry%request_field(g32, temp_indices(8))
102 call neko_scratch_registry%request_field(g33, temp_indices(9))
103
104
105 ! Compute the derivatives of the velocity (the components of the g tensor)
106 call dudxyz (g11%x, u%x, coef%drdx, coef%dsdx, coef%dtdx, coef)
107 call dudxyz (g12%x, u%x, coef%drdy, coef%dsdy, coef%dtdy, coef)
108 call dudxyz (g13%x, u%x, coef%drdz, coef%dsdz, coef%dtdz, coef)
109
110 call dudxyz (g21%x, v%x, coef%drdx, coef%dsdx, coef%dtdx, coef)
111 call dudxyz (g22%x, v%x, coef%drdy, coef%dsdy, coef%dtdy, coef)
112 call dudxyz (g23%x, v%x, coef%drdz, coef%dsdz, coef%dtdz, coef)
113
114 call dudxyz (g31%x, w%x, coef%drdx, coef%dsdx, coef%dtdx, coef)
115 call dudxyz (g32%x, w%x, coef%drdy, coef%dsdy, coef%dtdy, coef)
116 call dudxyz (g33%x, w%x, coef%drdz, coef%dsdz, coef%dtdz, coef)
117
118 call coef%gs_h%op(g11, gs_op_add)
119 call coef%gs_h%op(g12, gs_op_add)
120 call coef%gs_h%op(g13, gs_op_add)
121 call coef%gs_h%op(g21, gs_op_add)
122 call coef%gs_h%op(g22, gs_op_add)
123 call coef%gs_h%op(g23, gs_op_add)
124 call coef%gs_h%op(g31, gs_op_add)
125 call coef%gs_h%op(g32, gs_op_add)
126 call coef%gs_h%op(g33, gs_op_add)
127
128 do concurrent(i = 1:g11%dof%size())
129 g11%x(i,1,1,1) = g11%x(i,1,1,1) * coef%mult(i,1,1,1)
130 g12%x(i,1,1,1) = g12%x(i,1,1,1) * coef%mult(i,1,1,1)
131 g13%x(i,1,1,1) = g13%x(i,1,1,1) * coef%mult(i,1,1,1)
132 g21%x(i,1,1,1) = g21%x(i,1,1,1) * coef%mult(i,1,1,1)
133 g22%x(i,1,1,1) = g22%x(i,1,1,1) * coef%mult(i,1,1,1)
134 g23%x(i,1,1,1) = g23%x(i,1,1,1) * coef%mult(i,1,1,1)
135 g31%x(i,1,1,1) = g31%x(i,1,1,1) * coef%mult(i,1,1,1)
136 g32%x(i,1,1,1) = g32%x(i,1,1,1) * coef%mult(i,1,1,1)
137 g33%x(i,1,1,1) = g33%x(i,1,1,1) * coef%mult(i,1,1,1)
138 end do
139
140 do concurrent(e = 1:coef%msh%nelv)
141 do concurrent(i = 1:coef%Xh%lxyz)
142 ! G_ij = g^t g = g_mi g_mj
143 sigg11 = g11%x(i,1,1,e)**2 + g21%x(i,1,1,e)**2 + g31%x(i,1,1,e)**2
144 sigg22 = g12%x(i,1,1,e)**2 + g22%x(i,1,1,e)**2 + g32%x(i,1,1,e)**2
145 sigg33 = g13%x(i,1,1,e)**2 + g23%x(i,1,1,e)**2 + g33%x(i,1,1,e)**2
146 sigg12 = g11%x(i,1,1,e)*g12%x(i,1,1,e) + &
147 g21%x(i,1,1,e)*g22%x(i,1,1,e) + &
148 g31%x(i,1,1,e)*g32%x(i,1,1,e)
149 sigg13 = g11%x(i,1,1,e)*g13%x(i,1,1,e) + &
150 g21%x(i,1,1,e)*g23%x(i,1,1,e) + &
151 g31%x(i,1,1,e)*g33%x(i,1,1,e)
152 sigg23 = g12%x(i,1,1,e)*g13%x(i,1,1,e) + &
153 g22%x(i,1,1,e)*g23%x(i,1,1,e) + &
154 g32%x(i,1,1,e)*g33%x(i,1,1,e)
155
156 ! If LAPACK compute eigenvalues of the semi-definite positive matrix G
157 ! ..........to be done later on......
158 ! ELSE use the analytical method as done in the following
159
160 ! eigenvalues with the analytical method of Hasan et al. (2001)
161 ! doi:10.1006/jmre.2001.2400
162 if (abs(sigg11) .lt. eps) then
163 sigg11 = 0.0_rp
164 end if
165 if (abs(sigg12) .lt. eps) then
166 sigg12 = 0.0_rp
167 end if
168 if (abs(sigg13) .lt. eps) then
169 sigg13 = 0.0_rp
170 end if
171 if (abs(sigg22) .lt. eps) then
172 sigg22 = 0.0_rp
173 end if
174 if (abs(sigg23) .lt. eps) then
175 sigg23 = 0.0_rp
176 end if
177 if (abs(sigg33) .lt. eps) then
178 sigg33 = 0.0_rp
179 end if
180
181 if (abs(sigg12*sigg12 + &
182 sigg13*sigg13 + sigg23*sigg23) .lt. eps) then
183 ! G is diagonal
184 ! estimate the singular values according to:
185 sigma1 = sqrt(max(max(max(sigg11, sigg22), sigg33), 0.0_rp))
186 sigma3 = sqrt(max(min(min(sigg11, sigg22), sigg33), 0.0_rp))
187 invariant1 = sigg11 + sigg22 + sigg33
188 sigma2 = sqrt(abs(invariant1 - sigma1*sigma1 - sigma3*sigma3))
189 else
190
191 ! estimation of invariants
192 invariant1 = sigg11 + sigg22 + sigg33
193 invariant2 = sigg11*sigg22 + sigg11*sigg33 + sigg22*sigg33 - &
194 (sigg12*sigg12 + sigg13*sigg13 + sigg23*sigg23)
195 invariant3 = sigg11*sigg22*sigg33 + &
196 2.0_rp*sigg12*sigg13*sigg23 - &
197 (sigg11*sigg23*sigg23 + sigg22*sigg13*sigg13 + &
198 sigg33*sigg12*sigg12)
199
200 ! G is symmetric semi-definite positive matrix:
201 ! the invariants have to be larger-equal zero
202 ! which is obtained via forcing
203 invariant1 = max(invariant1, 0.0_rp)
204 invariant2 = max(invariant2, 0.0_rp)
205 invariant3 = max(invariant3, 0.0_rp)
206
207 ! compute the following angles from the invariants
208 alpha1 = invariant1*invariant1/9.0_rp - invariant2/3.0_rp
209
210 ! since alpha1 is always positive (see Hasan et al. (2001))
211 ! forcing is applied
212 alpha1 = max(alpha1, 0.0_rp)
213
214 alpha2 = invariant1*invariant1*invariant1/27.0_rp - &
215 invariant1*invariant2/6.0_rp + invariant3/2.0_rp
216
217 ! since acos(alpha2/(alpha1^(3/2)))/3.0_rp only valid for
218 ! alpha2^2 < alpha1^3.0_rp and arccos(x) only valid for -1<=x<=1
219 ! alpha3 is between 0 and pi/3
220 tmp1 = alpha2/sqrt(alpha1 * alpha1 * alpha1)
221
222 if (tmp1 .le. -1.0_rp) then
223 ! alpha3=pi/3 -> cos(alpha3)=0.5
224 ! compute the singular values
225 sigma1 = sqrt(max(invariant1/3.0_rp + sqrt(alpha1), 0.0_rp))
226 sigma2 = sigma1
227 sigma3 = sqrt(invariant1/3.0_rp - 2.0_rp*sqrt(alpha1))
228
229 elseif (tmp1 .ge. 1.0_rp) then
230 ! alpha3=0.0_rp -> cos(alpha3)=1.0
231 sigma1 = sqrt(max(invariant1/3.0_rp + 2.0_rp*sqrt(alpha1), &
232 0.0_rp))
233 sigma2 = sqrt(invariant1/3.0_rp - sqrt(alpha1))
234 sigma3 = sigma2
235 else
236 alpha3 = acos(tmp1)/3.0_rp
237
238 if (abs(invariant3) .lt. eps) then
239 ! In case of Invariant3=0, one or more eigenvalues are equal to zero
240 ! Therefore force sigma3 to 0 and compute sigma1 and sigma2
241 sigma1 = sqrt(max(invariant1/3.0_rp + &
242 2.0_rp*sqrt(alpha1)*cos(alpha3), 0.0_rp))
243 sigma2 = sqrt(abs(invariant1 - sigma1*sigma1))
244 sigma3 = 0.0_rp
245 else
246 sigma1 = sqrt(max(invariant1/3.0_rp + &
247 2.0_rp*sqrt(alpha1)*cos(alpha3), 0.0_rp))
248 sigma2 = sqrt(invariant1/3.0_rp - &
249 2.0_rp*sqrt(alpha1)*cos(pi_3 + alpha3))
250 sigma3 = sqrt(abs(invariant1 - &
251 sigma1*sigma1-sigma2*sigma2))
252 end if ! Invariant3=0 ?
253 end if ! tmp1
254 end if ! G diagonal ?
255
256 ! Estimate Dsigma
257 if (sigma1 .gt. 0.0_rp) then
258 dsigma = &
259 sigma3*(sigma1 - sigma2)*(sigma2 - sigma3)/(sigma1*sigma1)
260 else
261 dsigma = 0.0_rp
262 end if
263
264 !clipping to avoid negative values
265 dsigma = max(dsigma, 0.0_rp)
266
267 ! estimate turbulent viscosity
268
269 nut%x(i,1,1,e) = (c*delta%x(i,1,1,e))**2 * dsigma
270
271
272 end do
273 end do
274
275 call neko_scratch_registry%relinquish_field(temp_indices)
276 end subroutine sigma_compute_cpu
277
278end module sigma_cpu
279
Coefficients.
Definition coef.f90:34
Defines a registry for storing solution fields.
type(field_registry_t), target, public neko_field_registry
Global field registry.
Defines a field.
Definition field.f90:34
Defines Gather-scatter operations.
Definition gs_ops.f90:34
integer, parameter, public gs_op_add
Definition gs_ops.f90:36
Definition math.f90:60
real(kind=rp), parameter, public neko_eps
Machine epsilon .
Definition math.f90:69
integer, parameter, public rp
Global precision used in computations.
Definition num_types.f90:12
Operators.
Definition operators.f90:34
subroutine, public dudxyz(du, u, dr, ds, dt, coef)
Compute derivative of a scalar field along a single direction.
Definition operators.f90:76
Defines a registry for storing and requesting temporary fields This can be used when you have a funct...
type(scratch_registry_t), target, public neko_scratch_registry
Global scratch registry.
Implements the CPU kernel for the sigma_t type. Following Nicoud et al. "Using singular values to bui...
Definition sigma_cpu.f90:38
subroutine, public sigma_compute_cpu(t, tstep, coef, nut, delta, c)
Compute eddy viscosity on the CPU.
Definition sigma_cpu.f90:63
Coefficients defined on a given (mesh, ) tuple. Arrays use indices (i,j,k,e): element e,...
Definition coef.f90:55
field_list_t, To be able to group fields together
#define max(a, b)
Definition tensor.cu:40