134 function cacg_solve(this, Ax, x, f, n, coef, blst, gs_h, niter)
result(ksp_results)
135 class(
cacg_t),
intent(inout) :: this
136 class(
ax_t),
intent(in) :: ax
137 type(
field_t),
intent(inout) :: x
138 integer,
intent(in) :: n
139 real(kind=
rp),
dimension(n),
intent(in) :: f
140 type(
coef_t),
intent(inout) :: coef
142 type(
gs_t),
intent(inout) :: gs_h
144 integer,
optional,
intent(in) :: niter
145 integer :: i, j, k, l, iter, max_iter, s, ierr, it
146 real(kind=
rp) :: rnorm, rtr, rtz1, tmp
147 real(kind=
rp) :: beta(this%s+1), alpha(this%s+1), alpha1, alpha2, norm_fac
148 real(kind=
rp),
dimension(4*this%s+1,4*this%s+1) :: tt, g, gtt, temp, temp2
149 real(kind=
rp) :: p_c(4*this%s+1,this%s+1)
150 real(kind=
rp) :: r_c(4*this%s+1,this%s+1)
151 real(kind=
rp) :: z_c(4*this%s+1,this%s+1)
152 real(kind=
rp) :: x_c(4*this%s+1,this%s+1)
154 associate(pr => this%PR, r => this%r, p => this%p)
156 if (
present(niter))
then
159 max_iter = this%max_iter
161 norm_fac = 1.0_rp / sqrt(coef%volume)
166 call this%M%solve(p, r, n)
168 rtr =
glsc3(r, coef%mult, r, n)
169 rnorm = sqrt(rtr)*norm_fac
170 ksp_results%res_start = rnorm
171 ksp_results%res_final = rnorm
174 if(
abscmp(rnorm, 0.0_rp))
then
175 ksp_results%converged = .true.
177 call this%monitor_start(
'CACG')
178 do while (iter < max_iter)
181 call copy(pr(1,2*s+2), r, n)
185 if (mod(i,2) .eq. 0)
then
186 call ax%compute(pr(1,i), pr(1,i-1), coef, x%msh, x%Xh)
187 call gs_h%gs_op_vector(pr(1,i), n, gs_op_add)
188 call blst%apply_scalar(pr(1,i), n)
190 call this%M%solve(pr(1,i), pr(1,i-1), n)
195 if (mod(i,2) == 0)
then
196 call this%M%solve(pr(1,i+1), pr(1,i), n)
198 call ax%compute(pr(1,i+1), pr(1,i), coef, x%msh, x%Xh)
199 call gs_h%gs_op_vector(pr(1,i+1), n, gs_op_add)
200 call blst%apply_scalar(pr(1,1+i), n)
205 call rzero(p_c, (4*s+1) * (s+1))
207 call rzero(r_c, (4*s+1) * (s+1))
208 r_c(2*s+2,1) = 1.0_rp
209 call mxm(tt, 4*s+1, r_c, 4*s+1, z_c,s+1)
210 call rzero(x_c, (4*s+1) * (s+1))
211 call rzero(temp, (4*s+1)**2)
220 temp(it,1) = temp(it,1) &
221 + pr(i+k,j) * pr(i+k,l) * coef%mult(i+k,1,1,1)
230 temp(it,1) = temp(it,1) &
231 + pr(i+k,j) * pr(i+k,l) * coef%mult(i+k,1,1,1)
238 call mpi_allreduce(temp, temp2, it, &
249 call mxm(g,4*s+1, tt, 4*s+1,gtt,4*s+1)
254 call mxm(g, 4*s+1, r_c(1,j), 4*s+1,temp, 1)
255 call mxm(gtt, 4*s+1, p_c(1,j), 4*s+1,temp2, 1)
259 alpha1 = alpha1 + temp(i,1) * z_c(i,j)
260 alpha2 = alpha2 + temp2(i,1) * p_c(i,j)
262 alpha(j) = alpha1/alpha2
265 x_c(i,j+1) = x_c(i,j) + alpha(j) * p_c(i,j)
268 tmp = tmp + tt(i,k) * p_c(k,j)
270 r_c(i,j+1) = r_c(i,j) - alpha(j)*tmp
273 tmp = tmp + tt(i,k)*r_c(k,j+1)
278 call mxm(g,4*s+1,r_c(1,j+1),4*s+1,temp2,1)
281 alpha2 = alpha2 + temp2(i,1)*z_c(i,j+1)
283 beta(j) = alpha2 / alpha1
285 p_c(i,j+1) = z_c(i,j+1) + beta(j)*p_c(i,j)
296 x%x(i+k,1,1,1) = x%x(i+k,1,1,1) + pr(i+k,j) * x_c(j,s+1)
297 p(i+k) = p(i+k) + pr(i+k,j) * p_c(j,s+1)
298 tmp = pr(i+k,j) * r_c(j,s+1)
299 r(i+k) = r(i+k) + tmp
303 rtr = rtr + r(i+k)**2 * coef%mult(i+k,1,1,1)
308 x%x(i+k,1,1,1) = x%x(i+k,1,1,1) + pr(i+k,j) * x_c(j,s+1)
309 p(i+k) = p(i+k) + pr(i+k,j) * p_c(j,s+1)
310 tmp = pr(i+k,j) * r_c(j,s+1)
311 r(i+k) = r(i+k) + tmp
315 rtr = rtr + r(i+k)**2 * coef%mult(i+k,1,1,1)
320 call mpi_allreduce(rtr, tmp, 1, &
322 rnorm = norm_fac*sqrt(tmp)
323 call this%monitor_iter(iter, rnorm)
324 if( rnorm <= this%abs_tol)
exit
326 call this%monitor_stop()
327 ksp_results%res_final = rnorm
328 ksp_results%iter = iter
329 ksp_results%converged = this%is_converged(iter, rnorm)