132 function cacg_solve(this, Ax, x, f, n, coef, blst, gs_h, niter)
result(ksp_results)
133 class(
cacg_t),
intent(inout) :: this
134 class(
ax_t),
intent(in) :: ax
135 type(
field_t),
intent(inout) :: x
136 integer,
intent(in) :: n
137 real(kind=
rp),
dimension(n),
intent(in) :: f
138 type(
coef_t),
intent(inout) :: coef
140 type(
gs_t),
intent(inout) :: gs_h
142 integer,
optional,
intent(in) :: niter
143 integer :: i, j, k, l, iter, max_iter, s, ierr, it
144 real(kind=
rp) :: rnorm, rtr, rtz1, tmp
145 real(kind=
rp) :: beta(this%s+1), alpha(this%s+1), alpha1, alpha2, norm_fac
146 real(kind=
rp),
dimension(4*this%s+1,4*this%s+1) :: tt, g, gtt, temp, temp2
147 real(kind=
rp) :: p_c(4*this%s+1,this%s+1)
148 real(kind=
rp) :: r_c(4*this%s+1,this%s+1)
149 real(kind=
rp) :: z_c(4*this%s+1,this%s+1)
150 real(kind=
rp) :: x_c(4*this%s+1,this%s+1)
152 associate(pr => this%PR, r => this%r, p => this%p)
154 if (
present(niter))
then
157 max_iter = this%max_iter
159 norm_fac = 1.0_rp / sqrt(coef%volume)
164 call this%M%solve(p, r, n)
166 rtr =
glsc3(r, coef%mult, r, n)
167 rnorm = sqrt(rtr)*norm_fac
168 ksp_results%res_start = rnorm
169 ksp_results%res_final = rnorm
172 if(
abscmp(rnorm, 0.0_rp))
return
173 call this%monitor_start(
'CACG')
174 do while (iter < max_iter)
177 call copy(pr(1,2*s+2), r, n)
181 if (mod(i,2) .eq. 0)
then
182 call ax%compute(pr(1,i), pr(1,i-1), coef, x%msh, x%Xh)
183 call gs_h%gs_op_vector(pr(1,i), n, gs_op_add)
184 call blst%apply_scalar(pr(1,i), n)
186 call this%M%solve(pr(1,i), pr(1,i-1), n)
191 if (mod(i,2) == 0)
then
192 call this%M%solve(pr(1,i+1), pr(1,i), n)
194 call ax%compute(pr(1,i+1), pr(1,i), coef, x%msh, x%Xh)
195 call gs_h%gs_op_vector(pr(1,i+1), n, gs_op_add)
196 call blst%apply_scalar(pr(1,1+i), n)
201 call rzero(p_c, (4*s+1) * (s+1))
203 call rzero(r_c, (4*s+1) * (s+1))
204 r_c(2*s+2,1) = 1.0_rp
205 call mxm(tt, 4*s+1, r_c, 4*s+1, z_c,s+1)
206 call rzero(x_c, (4*s+1) * (s+1))
207 call rzero(temp, (4*s+1)**2)
209 do i = 0, n, neko_blk_size
211 if (i + neko_blk_size .le. n)
then
215 do k = 1, neko_blk_size
216 temp(it,1) = temp(it,1) &
217 + pr(i+k,j) * pr(i+k,l) * coef%mult(i+k,1,1,1)
226 temp(it,1) = temp(it,1) &
227 + pr(i+k,j) * pr(i+k,l) * coef%mult(i+k,1,1,1)
234 call mpi_allreduce(temp, temp2, it, &
245 call mxm(g,4*s+1, tt, 4*s+1,gtt,4*s+1)
250 call mxm(g, 4*s+1, r_c(1,j), 4*s+1,temp, 1)
251 call mxm(gtt, 4*s+1, p_c(1,j), 4*s+1,temp2, 1)
255 alpha1 = alpha1 + temp(i,1) * z_c(i,j)
256 alpha2 = alpha2 + temp2(i,1) * p_c(i,j)
258 alpha(j) = alpha1/alpha2
261 x_c(i,j+1) = x_c(i,j) + alpha(j) * p_c(i,j)
264 tmp = tmp + tt(i,k) * p_c(k,j)
266 r_c(i,j+1) = r_c(i,j) - alpha(j)*tmp
269 tmp = tmp + tt(i,k)*r_c(k,j+1)
274 call mxm(g,4*s+1,r_c(1,j+1),4*s+1,temp2,1)
277 alpha2 = alpha2 + temp2(i,1)*z_c(i,j+1)
279 beta(j) = alpha2 / alpha1
281 p_c(i,j+1) = z_c(i,j+1) + beta(j)*p_c(i,j)
288 do i = 0, n, neko_blk_size
289 if (i + neko_blk_size .le. n)
then
291 do k = 1, neko_blk_size
292 x%x(i+k,1,1,1) = x%x(i+k,1,1,1) + pr(i+k,j) * x_c(j,s+1)
293 p(i+k) = p(i+k) + pr(i+k,j) * p_c(j,s+1)
294 tmp = pr(i+k,j) * r_c(j,s+1)
295 r(i+k) = r(i+k) + tmp
298 do k = 1, neko_blk_size
299 rtr = rtr + r(i+k)**2 * coef%mult(i+k,1,1,1)
304 x%x(i+k,1,1,1) = x%x(i+k,1,1,1) + pr(i+k,j) * x_c(j,s+1)
305 p(i+k) = p(i+k) + pr(i+k,j) * p_c(j,s+1)
306 tmp = pr(i+k,j) * r_c(j,s+1)
307 r(i+k) = r(i+k) + tmp
311 rtr = rtr + r(i+k)**2 * coef%mult(i+k,1,1,1)
316 call mpi_allreduce(rtr, tmp, 1, &
318 rnorm = norm_fac*sqrt(tmp)
319 call this%monitor_iter(iter, rnorm)
320 if( rnorm <= this%abs_tol)
exit
322 call this%monitor_stop()
323 ksp_results%res_final = rnorm
324 ksp_results%iter = iter
325 ksp_results%converged = this%is_converged(iter, rnorm)